Detailed syntax breakdown of Definition df-ordt
| Step | Hyp | Ref
| Expression |
| 1 | | cordt 17544 |
. 2
class
ordTop |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | 2 | cv 1539 |
. . . . . . . 8
class 𝑟 |
| 5 | 4 | cdm 5685 |
. . . . . . 7
class dom 𝑟 |
| 6 | 5 | csn 4626 |
. . . . . 6
class {dom
𝑟} |
| 7 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 8 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
| 9 | 8 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 10 | 7 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 11 | 9, 10, 4 | wbr 5143 |
. . . . . . . . . . 11
wff 𝑦𝑟𝑥 |
| 12 | 11 | wn 3 |
. . . . . . . . . 10
wff ¬
𝑦𝑟𝑥 |
| 13 | 12, 8, 5 | crab 3436 |
. . . . . . . . 9
class {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥} |
| 14 | 7, 5, 13 | cmpt 5225 |
. . . . . . . 8
class (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) |
| 15 | 10, 9, 4 | wbr 5143 |
. . . . . . . . . . 11
wff 𝑥𝑟𝑦 |
| 16 | 15 | wn 3 |
. . . . . . . . . 10
wff ¬
𝑥𝑟𝑦 |
| 17 | 16, 8, 5 | crab 3436 |
. . . . . . . . 9
class {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦} |
| 18 | 7, 5, 17 | cmpt 5225 |
. . . . . . . 8
class (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) |
| 19 | 14, 18 | cun 3949 |
. . . . . . 7
class ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) |
| 20 | 19 | crn 5686 |
. . . . . 6
class ran
((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) |
| 21 | 6, 20 | cun 3949 |
. . . . 5
class ({dom
𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))) |
| 22 | | cfi 9450 |
. . . . 5
class
fi |
| 23 | 21, 22 | cfv 6561 |
. . . 4
class
(fi‘({dom 𝑟}
∪ ran ((𝑥 ∈ dom
𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))) |
| 24 | | ctg 17482 |
. . . 4
class
topGen |
| 25 | 23, 24 | cfv 6561 |
. . 3
class
(topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))) |
| 26 | 2, 3, 25 | cmpt 5225 |
. 2
class (𝑟 ∈ V ↦
(topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))))) |
| 27 | 1, 26 | wceq 1540 |
1
wff ordTop =
(𝑟 ∈ V ↦
(topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))))) |