HomeHome Metamath Proof Explorer
Theorem List (p. 175 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 17401-17500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcatlid 17401 Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &    · = (comp‘𝐶)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (( 1𝑌)(⟨𝑋, 𝑌· 𝑌)𝐹) = 𝐹)
 
Theoremcatrid 17402 Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &    · = (comp‘𝐶)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)
 
Theoremcatcocl 17403 Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍))
 
Theoremcatass 17404 Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &   (𝜑𝑊𝐵)    &   (𝜑𝐾 ∈ (𝑍𝐻𝑊))       (𝜑 → ((𝐾(⟨𝑌, 𝑍· 𝑊)𝐺)(⟨𝑋, 𝑌· 𝑊)𝐹) = (𝐾(⟨𝑋, 𝑍· 𝑊)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)))
 
Theoremcatcone0 17405 Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑋𝐻𝑌) ≠ ∅)    &   (𝜑 → (𝑌𝐻𝑍) ≠ ∅)       (𝜑 → (𝑋𝐻𝑍) ≠ ∅)
 
Theorem0catg 17406 Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat)
 
Theorem0cat 17407 The empty set is a category, the empty category, see example 3.3(4.c) in [Adamek] p. 24. (Contributed by Mario Carneiro, 3-Jan-2017.)
∅ ∈ Cat
 
Theoremhomffval 17408* Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
𝐹 = (Homf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
 
Theoremfnhomeqhomf 17409 If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.)
𝐹 = (Homf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻)
 
Theoremhomfval 17410 Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐹 = (Homf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))
 
Theoremhomffn 17411 The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐹 = (Homf𝐶)    &   𝐵 = (Base‘𝐶)       𝐹 Fn (𝐵 × 𝐵)
 
Theoremhomfeq 17412* Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐵 = (Base‘𝐷))       (𝜑 → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦)))
 
Theoremhomfeqd 17413 If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑 → (Base‘𝐶) = (Base‘𝐷))    &   (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷))       (𝜑 → (Homf𝐶) = (Homf𝐷))
 
Theoremhomfeqbas 17414 Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑 → (Homf𝐶) = (Homf𝐷))       (𝜑 → (Base‘𝐶) = (Base‘𝐷))
 
Theoremhomfeqval 17415 Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))
 
Theoremcomfffval 17416* Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)       𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
 
Theoremcomffval 17417* Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
 
Theoremcomfval 17418 Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
 
Theoremcomfffval2 17419* Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Homf𝐶)    &    · = (comp‘𝐶)       𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
 
Theoremcomffval2 17420* Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Homf𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
 
Theoremcomfval2 17421 Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Homf𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
 
Theoremcomfffn 17422 The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)       𝑂 Fn ((𝐵 × 𝐵) × 𝐵)
 
Theoremcomffn 17423 The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑂 = (compf𝐶)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))
 
Theoremcomfeq 17424* Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
· = (comp‘𝐶)    &    = (comp‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐵 = (Base‘𝐷))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))       (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓)))
 
Theoremcomfeqd 17425 Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑 → (comp‘𝐶) = (comp‘𝐷))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))       (𝜑 → (compf𝐶) = (compf𝐷))
 
Theoremcomfeqval 17426 Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &    = (comp‘𝐷)    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
 
Theoremcatpropd 17427 Two structures with the same base, hom-sets and composition operation are either both categories or neither. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)       (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
 
Theoremcidpropd 17428 Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)       (𝜑 → (Id‘𝐶) = (Id‘𝐷))
 
8.1.2  Opposite category
 
Syntaxcoppc 17429 The opposite category operation.
class oppCat
 
Definitiondf-oppc 17430* Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of [Adamek] p. 25. (Contributed by Mario Carneiro, 2-Jan-2017.)
oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑓)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑓)(1st𝑢)))⟩))
 
Theoremoppcval 17431* Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝑂 = (oppCat‘𝐶)       (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
 
Theoremoppchomfval 17432 Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.)
𝐻 = (Hom ‘𝐶)    &   𝑂 = (oppCat‘𝐶)       tpos 𝐻 = (Hom ‘𝑂)
 
TheoremoppchomfvalOLD 17433 Obsolete proof of oppchomfval 17432 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐻 = (Hom ‘𝐶)    &   𝑂 = (oppCat‘𝐶)       tpos 𝐻 = (Hom ‘𝑂)
 
Theoremoppchom 17434 Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐻 = (Hom ‘𝐶)    &   𝑂 = (oppCat‘𝐶)       (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋)
 
Theoremoppccofval 17435 Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &    · = (comp‘𝐶)    &   𝑂 = (oppCat‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))
 
Theoremoppcco 17436 Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &    · = (comp‘𝐶)    &   𝑂 = (oppCat‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍)𝐹) = (𝐹(⟨𝑍, 𝑌· 𝑋)𝐺))
 
Theoremoppcbas 17437 Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.)
𝑂 = (oppCat‘𝐶)    &   𝐵 = (Base‘𝐶)       𝐵 = (Base‘𝑂)
 
TheoremoppcbasOLD 17438 Obsolete version of oppcbas 17437 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑂 = (oppCat‘𝐶)    &   𝐵 = (Base‘𝐶)       𝐵 = (Base‘𝑂)
 
Theoremoppccatid 17439 Lemma for oppccat 17442. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝑂 = (oppCat‘𝐶)       (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))
 
Theoremoppchomf 17440 Hom-sets of the opposite category. (Contributed by Mario Carneiro, 17-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   𝐻 = (Homf𝐶)       tpos 𝐻 = (Homf𝑂)
 
Theoremoppcid 17441 Identity function of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   𝐵 = (Id‘𝐶)       (𝐶 ∈ Cat → (Id‘𝑂) = 𝐵)
 
Theoremoppccat 17442 An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝑂 = (oppCat‘𝐶)       (𝐶 ∈ Cat → 𝑂 ∈ Cat)
 
Theorem2oppcbas 17443 The double opposite category has the same objects as the original category. Intended for use with property lemmas such as monpropd 17458. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   𝐵 = (Base‘𝐶)       𝐵 = (Base‘(oppCat‘𝑂))
 
Theorem2oppchomf 17444 The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd 17458. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝑂 = (oppCat‘𝐶)       (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
 
Theorem2oppccomf 17445 The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17458. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝑂 = (oppCat‘𝐶)       (compf𝐶) = (compf‘(oppCat‘𝑂))
 
Theoremoppchomfpropd 17446 If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑 → (Homf𝐶) = (Homf𝐷))       (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷)))
 
Theoremoppccomfpropd 17447 If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))       (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)))
 
Theoremoppccatf 17448 oppCat restricted to Cat is a function from Cat to Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
(oppCat ↾ Cat):Cat⟶Cat
 
8.1.3  Monomorphisms and epimorphisms
 
Syntaxcmon 17449 Extend class notation with the class of all monomorphisms.
class Mono
 
Syntaxcepi 17450 Extend class notation with the class of all epimorphisms.
class Epi
 
Definitiondf-mon 17451* Function returning the monomorphisms of the category 𝑐. JFM CAT1 def. 10. (Contributed by FL, 5-Dec-2007.) (Revised by Mario Carneiro, 2-Jan-2017.)
Mono = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}))
 
Definitiondf-epi 17452 Function returning the epimorphisms of the category 𝑐. JFM CAT1 def. 11. (Contributed by FL, 8-Aug-2008.) (Revised by Mario Carneiro, 2-Jan-2017.)
Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐)))
 
Theoremmonfval 17453* Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝑀 = (Mono‘𝐶)    &   (𝜑𝐶 ∈ Cat)       (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
 
Theoremismon 17454* Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝑀 = (Mono‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
 
Theoremismon2 17455* Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝑀 = (Mono‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
 
Theoremmonhom 17456 A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝑀 = (Mono‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌))
 
Theoremmoni 17457 Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝑀 = (Mono‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝑀𝑌))    &   (𝜑𝐺 ∈ (𝑍𝐻𝑋))    &   (𝜑𝐾 ∈ (𝑍𝐻𝑋))       (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))
 
Theoremmonpropd 17458 If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)       (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))
 
Theoremoppcmon 17459 A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝑀 = (Mono‘𝑂)    &   𝐸 = (Epi‘𝐶)       (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))
 
Theoremoppcepi 17460 An epimorphism in the opposite category is a monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐸 = (Epi‘𝑂)    &   𝑀 = (Mono‘𝐶)       (𝜑 → (𝑋𝐸𝑌) = (𝑌𝑀𝑋))
 
Theoremisepi 17461* Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝐸 = (Epi‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))))
 
Theoremisepi2 17462* Write out the epimorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝐸 = (Epi‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
 
Theoremepihom 17463 An epimorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝐸 = (Epi‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐸𝑌) ⊆ (𝑋𝐻𝑌))
 
Theoremepii 17464 Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   𝐸 = (Epi‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐸𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &   (𝜑𝐾 ∈ (𝑌𝐻𝑍))       (𝜑 → ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐾(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝐺 = 𝐾))
 
8.1.4  Sections, inverses, isomorphisms
 
Syntaxcsect 17465 Extend class notation with the sections of a morphism.
class Sect
 
Syntaxcinv 17466 Extend class notation with the inverses of a morphism.
class Inv
 
Syntaxciso 17467 Extend class notation with the class of all isomorphisms.
class Iso
 
Definitiondf-sect 17468* Function returning the section relation in a category. Given arrows 𝑓:𝑋𝑌 and 𝑔:𝑌𝑋, we say 𝑓Sect𝑔, that is, 𝑓 is a section of 𝑔, if 𝑔𝑓 = 1‘𝑋. If there there is an arrow 𝑔 with 𝑓Sect𝑔, the arrow 𝑓 is called a section, see definition 7.19 of [Adamek] p. 106. (Contributed by Mario Carneiro, 2-Jan-2017.)
Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
 
Definitiondf-inv 17469* The inverse relation in a category. Given arrows 𝑓:𝑋𝑌 and 𝑔:𝑌𝑋, we say 𝑔Inv𝑓, that is, 𝑔 is an inverse of 𝑓, if 𝑔 is a section of 𝑓 and 𝑓 is a section of 𝑔. Definition 3.8 of [Adamek] p. 28. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 2-Jan-2017.)
Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
 
Definitiondf-iso 17470* Function returning the isomorphisms of the category 𝑐. Definition 3.8 of [Adamek] p. 28, and definition in [Lang] p. 54. (Contributed by FL, 9-Jun-2014.) (Revised by Mario Carneiro, 2-Jan-2017.)
Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
 
Theoremsectffval 17471* Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &    1 = (Id‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
 
Theoremsectfval 17472* Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &    1 = (Id‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
 
Theoremsectss 17473 The section relation is a relation between morphisms from 𝑋 to 𝑌 and morphisms from 𝑌 to 𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &    1 = (Id‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝑆𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
 
Theoremissect 17474 The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &    1 = (Id‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋))))
 
Theoremissect2 17475 Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &    1 = (Id‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑋))       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(⟨𝑋, 𝑌· 𝑋)𝐹) = ( 1𝑋)))
 
Theoremsectcan 17476 If 𝐺 is a section of 𝐹 and 𝐹 is a section of 𝐻, then 𝐺 = 𝐻. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐺(𝑋𝑆𝑌)𝐹)    &   (𝜑𝐹(𝑌𝑆𝑋)𝐻)       (𝜑𝐺 = 𝐻)
 
Theoremsectco 17477 Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &    · = (comp‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹(𝑋𝑆𝑌)𝐺)    &   (𝜑𝐻(𝑌𝑆𝑍)𝐾)       (𝜑 → (𝐻(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑆𝑍)(𝐺(⟨𝑍, 𝑌· 𝑋)𝐾))
 
Theoremisofval 17478* Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.)
(𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
 
Theoreminvffval 17479* Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)       (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
 
Theoreminvfval 17480 Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
 
Theoremisinv 17481 Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
 
Theoreminvss 17482 The inverse relation is a relation between morphisms 𝐹:𝑋𝑌 and their inverses 𝐺:𝑌𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
 
Theoreminvsym 17483 The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌𝑁𝑋)𝐹))
 
Theoreminvsym2 17484 The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
 
Theoreminvfun 17485 The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → Fun (𝑋𝑁𝑌))
 
Theoremisoval 17486 The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
 
Theoreminviso1 17487 If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹(𝑋𝑁𝑌)𝐺)       (𝜑𝐹 ∈ (𝑋𝐼𝑌))
 
Theoreminviso2 17488 If 𝐺 is an inverse to 𝐹, then 𝐺 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹(𝑋𝑁𝑌)𝐺)       (𝜑𝐺 ∈ (𝑌𝐼𝑋))
 
Theoreminvf 17489 The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
 
Theoreminvf1o 17490 The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism 𝐹 ∈ (𝑋𝐼𝑌) has a unique inverse, denoted by ((Inv‘𝐶)‘𝐹). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))
 
Theoreminvinv 17491 The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))       (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
 
Theoreminvco 17492 The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))    &    · = (comp‘𝐶)    &   (𝜑𝑍𝐵)    &   (𝜑𝐺 ∈ (𝑌𝐼𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
 
Theoremdfiso2 17493* Alternate definition of an isomorphism of a category, according to definition 3.8 in [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &    1 = (Id‘𝐶)    &    = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)    &    = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
 
Theoremdfiso3 17494* Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Iso‘𝐶)    &   𝑆 = (Sect‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
 
Theoreminveq 17495 If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.)
𝐵 = (Base‘𝐶)    &   𝑁 = (Inv‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾))
 
Theoremisofn 17496 The function value of the function returning the isomorphisms of a category is a function over the square product of the base set of the category. (Contributed by AV, 5-Apr-2020.)
(𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
 
Theoremisohom 17497 An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
 
Theoremisoco 17498 The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐵 = (Base‘𝐶)    &    · = (comp‘𝐶)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐼𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐼𝑍))
 
Theoremoppcsect 17499 A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)    &   𝑇 = (Sect‘𝑂)       (𝜑 → (𝐹(𝑋𝑇𝑌)𝐺𝐺(𝑋𝑆𝑌)𝐹))
 
Theoremoppcsect2 17500 A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.)
𝐵 = (Base‘𝐶)    &   𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)    &   𝑇 = (Sect‘𝑂)       (𝜑 → (𝑋𝑇𝑌) = (𝑋𝑆𝑌))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >