| Metamath
Proof Explorer Theorem List (p. 175 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dsndxnbasendx 17401 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
| Theorem | dsndxnplusgndx 17402 | The slot for the distance function is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpds 20107. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
| Theorem | dsndxnmulrndx 17403 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdnscsi 17404 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 21132 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | dsndxntsetndx 17405 | The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds 24585. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifdsndx 17406 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21328. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
| Theorem | unifndx 17407 | Index value of the df-unif 17292 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.) |
| ⊢ (UnifSet‘ndx) = ;13 | ||
| Theorem | unifid 17408 | Utility theorem: index-independent form of df-unif 17292. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ UnifSet = Slot (UnifSet‘ndx) | ||
| Theorem | unifndxnn 17409 | The index of the slot for the uniform set in an extensible structure is a positive integer. Formerly part of proof for tuslem 24203. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ∈ ℕ | ||
| Theorem | basendxltunifndx 17410 | The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. Formerly part of proof for tuslem 24203. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
| Theorem | unifndxnbasendx 17411 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
| Theorem | unifndxntsetndx 17412 | The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem 24203. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifunifndx 17413 | The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 21328. (Contributed by AV, 10-Nov-2024.) |
| ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) | ||
| Theorem | ressunif 17414 | UnifSet is unaffected by restriction. (Contributed by Thierry Arnoux, 7-Dec-2017.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑈 = (UnifSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑈 = (UnifSet‘𝐻)) | ||
| Theorem | odrngstr 17415 | Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;12〉 | ||
| Theorem | odrngbas 17416 | The base set of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | odrngplusg 17417 | The addition operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑊)) | ||
| Theorem | odrngmulr 17418 | The multiplication operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑊)) | ||
| Theorem | odrngtset 17419 | The open sets of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | odrngle 17420 | The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
| Theorem | odrngds 17421 | The metric of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
| Theorem | ressds 17422 | dist is unaffected by restriction. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐷 = (dist‘𝐻)) | ||
| Theorem | homndx 17423 | Index value of the df-hom 17293 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
| ⊢ (Hom ‘ndx) = ;14 | ||
| Theorem | homid 17424 | Utility theorem: index-independent form of df-hom 17293. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ Hom = Slot (Hom ‘ndx) | ||
| Theorem | ccondx 17425 | Index value of the df-cco 17294 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
| ⊢ (comp‘ndx) = ;15 | ||
| Theorem | ccoid 17426 | Utility theorem: index-independent form of df-cco 17294. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ comp = Slot (comp‘ndx) | ||
| Theorem | slotsbhcdif 17427 | The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
| Theorem | slotsdifplendx2 17428 | The index of the slot for the "less than or equal to" ordering is not the index of other slots. Formerly part of proof for prstcleval 49380. (Contributed by AV, 12-Nov-2024.) |
| ⊢ ((le‘ndx) ≠ (comp‘ndx) ∧ (le‘ndx) ≠ (Hom ‘ndx)) | ||
| Theorem | slotsdifocndx 17429 | The index of the slot for the orthocomplementation is not the index of other slots. Formerly part of proof for prstcocval 49382. (Contributed by AV, 12-Nov-2024.) |
| ⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) | ||
| Theorem | resshom 17430 | Hom is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐻 = (Hom ‘𝐷)) | ||
| Theorem | ressco 17431 | comp is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (comp‘𝐷)) | ||
| Syntax | crest 17432 | Extend class notation with the function returning a subspace topology. |
| class ↾t | ||
| Syntax | ctopn 17433 | Extend class notation with the topology extractor function. |
| class TopOpen | ||
| Definition | df-rest 17434* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
| Definition | df-topn 17435 | Define the topology extractor function. This differs from df-tset 17288 when a structure has been restricted using df-ress 17250; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
| Theorem | restfn 17436 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
| ⊢ ↾t Fn (V × V) | ||
| Theorem | topnfn 17437 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ TopOpen Fn V | ||
| Theorem | restval 17438* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
| Theorem | elrest 17439* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
| Theorem | elrestr 17440 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
| Theorem | 0rest 17441 | Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (∅ ↾t 𝐴) = ∅ | ||
| Theorem | restid2 17442 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
| Theorem | restsspw 17443 | The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 | ||
| Theorem | firest 17444 | The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ (fi‘(𝐽 ↾t 𝐴)) = ((fi‘𝐽) ↾t 𝐴) | ||
| Theorem | restid 17445 | The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) | ||
| Theorem | topnval 17446 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) | ||
| Theorem | topnid 17447 | Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ⊆ 𝒫 𝐵 → 𝐽 = (TopOpen‘𝑊)) | ||
| Theorem | topnpropd 17448 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
| Syntax | ctg 17449 | Extend class notation with a function that converts a basis to its corresponding topology. |
| class topGen | ||
| Syntax | cpt 17450 | Extend class notation with a function whose value is a product topology. |
| class ∏t | ||
| Syntax | c0g 17451 | Extend class notation with group identity element. |
| class 0g | ||
| Syntax | cgsu 17452 | Extend class notation to include finitely supported group sums. |
| class Σg | ||
| Definition | df-0g 17453* | Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum 17454. The related theorems are provided later, see grpidval 18637. (Contributed by NM, 20-Aug-2011.) |
| ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | ||
| Definition | df-gsum 17454* |
Define a finite group sum (also called "iterated sum") of a
structure.
Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of
indices is 𝐴 and the values are given by 𝐹 at each
index. A
group sum over a multiplicative group may be viewed as a product. The
definition is meaningful in different contexts, depending on the size of
the index set 𝐴 and each demanding different
properties of 𝐺.
1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. See gsum0 18660. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc. See gsumval2 18662 and gsumnunsn 34519. 3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. See gsumval3 19886. 4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. See df-tsms 24063. Remark: this definition is required here because the symbol Σg is already used in df-prds 17459 and df-imas 17520. The related theorems are provided later, see gsumvalx 18652. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | ||
| Definition | df-topgen 17455* | Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78 (see tgval2 22892). The first use of this definition is tgval 22891 but the token is used in df-pt 17456. See tgval3 22899 for an alternate expression for the value. (Contributed by NM, 16-Jul-2006.) |
| ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | ||
| Definition | df-pt 17456* | Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ ∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) | ||
| Syntax | cprds 17457 | The function constructing structure products. |
| class Xs | ||
| Syntax | cpws 17458 | The function constructing structure powers. |
| class ↑s | ||
| Definition | df-prds 17459* | Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑠〉, 〈( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) | ||
| Theorem | reldmprds 17460 | The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ Rel dom Xs | ||
| Definition | df-pws 17461* | Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | ||
| Theorem | prdsbasex 17462* | Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015.) |
| ⊢ 𝐵 = X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ⇒ ⊢ 𝐵 ∈ V | ||
| Theorem | imasvalstr 17463 | An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ 𝑈 Struct 〈1, ;12〉 | ||
| Theorem | prdsvalstr 17464 | Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉 | ||
| Theorem | prdsbaslem 17465 | Lemma for prdsbas 17469 and similar theorems. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 12-Jul-2024.) |
| ⊢ (𝜑 → 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}))) & ⊢ 𝐴 = (𝐸‘𝑈) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ {〈(𝐸‘ndx), 𝑇〉} ⊆ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) ⇒ ⊢ (𝜑 → 𝐴 = 𝑇) | ||
| Theorem | prdsvallem 17466* | Lemma for prdsval 17467. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17467, dependency on df-hom 17293 removed. (Revised by AV, 13-Oct-2024.) |
| ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V | ||
| Theorem | prdsval 17467* | Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) & ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) & ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) & ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) & ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) & ⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) & ⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}))) | ||
| Theorem | prdssca 17468 | Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) | ||
| Theorem | prdsbas 17469* | Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
| Theorem | prdsplusg 17470* | Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ + = (+g‘𝑃) ⇒ ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
| Theorem | prdsmulr 17471* | Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ · = (.r‘𝑃) ⇒ ⊢ (𝜑 → · = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
| Theorem | prdsvsca 17472* | Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
| Theorem | prdsip 17473* | Inner product in a structure product. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ , = (·𝑖‘𝑃) ⇒ ⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) | ||
| Theorem | prdsle 17474* | Structure product weak ordering. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ ≤ = (le‘𝑃) ⇒ ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) | ||
| Theorem | prdsless 17475 | Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ ≤ = (le‘𝑃) ⇒ ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) | ||
| Theorem | prdsds 17476* | Structure product distance function. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐷 = (dist‘𝑃) ⇒ ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) | ||
| Theorem | prdsdsfn 17477 | Structure product distance function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐷 = (dist‘𝑃) ⇒ ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) | ||
| Theorem | prdstset 17478 | Structure product topology. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝑂 = (TopSet‘𝑃) ⇒ ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) | ||
| Theorem | prdshom 17479* | Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐻 = (Hom ‘𝑃) ⇒ ⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) | ||
| Theorem | prdsco 17480* | Structure product composition operation. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐻 = (Hom ‘𝑃) & ⊢ ∙ = (comp‘𝑃) ⇒ ⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) | ||
| Theorem | prdsbas2 17481* | The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
| Theorem | prdsbasmpt 17482* | A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ (Base‘(𝑅‘𝑥)))) | ||
| Theorem | prdsbasfn 17483 | Points in the structure product are functions; use this with dffn5 6936 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 Fn 𝐼) | ||
| Theorem | prdsbasprj 17484 | Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑇‘𝐽) ∈ (Base‘(𝑅‘𝐽))) | ||
| Theorem | prdsplusgval 17485* | Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) | ||
| Theorem | prdsplusgfval 17486 | Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹‘𝐽)(+g‘(𝑅‘𝐽))(𝐺‘𝐽))) | ||
| Theorem | prdsmulrval 17487* | Value of a componentwise ring product in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) | ||
| Theorem | prdsmulrfval 17488 | Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) | ||
| Theorem | prdsleval 17489* | Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥)(le‘(𝑅‘𝑥))(𝐺‘𝑥))) | ||
| Theorem | prdsdsval 17490* | Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ 𝐷 = (dist‘𝑌) ⇒ ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘(𝑅‘𝑥))(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) | ||
| Theorem | prdsvscaval 17491* | Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) | ||
| Theorem | prdsvscafval 17492 | Scalar multiplication of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = (𝐹( ·𝑠 ‘(𝑅‘𝐽))(𝐺‘𝐽))) | ||
| Theorem | prdsbas3 17493* | The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 𝐾) | ||
| Theorem | prdsbasmpt2 17494* | A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ 𝐾)) | ||
| Theorem | prdsbascl 17495* | An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾) | ||
| Theorem | prdsdsval2 17496* | Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑌) ⇒ ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) | ||
| Theorem | prdsdsval3 17497* | Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾)) & ⊢ 𝐷 = (dist‘𝑌) ⇒ ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) | ||
| Theorem | pwsval 17498 | Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐹 = (Scalar‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) | ||
| Theorem | pwsbas 17499 | Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑m 𝐼) = (Base‘𝑌)) | ||
| Theorem | pwselbasb 17500 | Membership in the base set of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍) → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |