MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17452
Description: The extended real number structure. Unlike df-cnfld 21145, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21145. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17450 . 2 class *𝑠
2 cnx 17130 . . . . . 6 class ndx
3 cbs 17148 . . . . . 6 class Base
42, 3cfv 6543 . . . . 5 class (Base‘ndx)
5 cxr 11251 . . . . 5 class *
64, 5cop 4634 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17201 . . . . . 6 class +g
82, 7cfv 6543 . . . . 5 class (+g‘ndx)
9 cxad 13094 . . . . 5 class +𝑒
108, 9cop 4634 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17202 . . . . . 6 class .r
122, 11cfv 6543 . . . . 5 class (.r‘ndx)
13 cxmu 13095 . . . . 5 class ·e
1412, 13cop 4634 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4632 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17207 . . . . . 6 class TopSet
172, 16cfv 6543 . . . . 5 class (TopSet‘ndx)
18 cle 11253 . . . . . 6 class
19 cordt 17449 . . . . . 6 class ordTop
2018, 19cfv 6543 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4634 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17208 . . . . . 6 class le
232, 22cfv 6543 . . . . 5 class (le‘ndx)
2423, 18cop 4634 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17210 . . . . . 6 class dist
262, 25cfv 6543 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1540 . . . . . . . 8 class 𝑥
3028cv 1540 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5148 . . . . . . 7 wff 𝑥𝑦
3229cxne 13093 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7411 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13093 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7411 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4528 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7413 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4634 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4632 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3946 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1541 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  21159  xrsex  21160  xrsbas  21161  xrsadd  21162  xrsmul  21163  xrstset  21164  xrsle  21165  xrsds  21188
  Copyright terms: Public domain W3C validator