MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17403
Description: The extended real number structure. Unlike df-cnfld 21290, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21290. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17401 . 2 class *𝑠
2 cnx 17101 . . . . . 6 class ndx
3 cbs 17117 . . . . . 6 class Base
42, 3cfv 6481 . . . . 5 class (Base‘ndx)
5 cxr 11142 . . . . 5 class *
64, 5cop 4582 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17158 . . . . . 6 class +g
82, 7cfv 6481 . . . . 5 class (+g‘ndx)
9 cxad 13006 . . . . 5 class +𝑒
108, 9cop 4582 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17159 . . . . . 6 class .r
122, 11cfv 6481 . . . . 5 class (.r‘ndx)
13 cxmu 13007 . . . . 5 class ·e
1412, 13cop 4582 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4580 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17164 . . . . . 6 class TopSet
172, 16cfv 6481 . . . . 5 class (TopSet‘ndx)
18 cle 11144 . . . . . 6 class
19 cordt 17400 . . . . . 6 class ordTop
2018, 19cfv 6481 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4582 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17165 . . . . . 6 class le
232, 22cfv 6481 . . . . 5 class (le‘ndx)
2423, 18cop 4582 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17167 . . . . . 6 class dist
262, 25cfv 6481 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1540 . . . . . . . 8 class 𝑥
3028cv 1540 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5091 . . . . . . 7 wff 𝑥𝑦
3229cxne 13005 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7346 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13005 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7346 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4475 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7348 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4582 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4580 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3900 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1541 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsle  17505  xrsbas  17507  xrsstr  21318  xrsex  21319  xrsadd  21320  xrsmul  21321  xrstset  21322  xrsds  21344
  Copyright terms: Public domain W3C validator