Detailed syntax breakdown of Definition df-xrs
Step | Hyp | Ref
| Expression |
1 | | cxrs 17220 |
. 2
class
ℝ*𝑠 |
2 | | cnx 16903 |
. . . . . 6
class
ndx |
3 | | cbs 16921 |
. . . . . 6
class
Base |
4 | 2, 3 | cfv 6437 |
. . . . 5
class
(Base‘ndx) |
5 | | cxr 11017 |
. . . . 5
class
ℝ* |
6 | 4, 5 | cop 4568 |
. . . 4
class
〈(Base‘ndx), ℝ*〉 |
7 | | cplusg 16971 |
. . . . . 6
class
+g |
8 | 2, 7 | cfv 6437 |
. . . . 5
class
(+g‘ndx) |
9 | | cxad 12855 |
. . . . 5
class
+𝑒 |
10 | 8, 9 | cop 4568 |
. . . 4
class
〈(+g‘ndx), +𝑒
〉 |
11 | | cmulr 16972 |
. . . . . 6
class
.r |
12 | 2, 11 | cfv 6437 |
. . . . 5
class
(.r‘ndx) |
13 | | cxmu 12856 |
. . . . 5
class
·e |
14 | 12, 13 | cop 4568 |
. . . 4
class
〈(.r‘ndx), ·e
〉 |
15 | 6, 10, 14 | ctp 4566 |
. . 3
class
{〈(Base‘ndx), ℝ*〉,
〈(+g‘ndx), +𝑒 〉,
〈(.r‘ndx), ·e 〉} |
16 | | cts 16977 |
. . . . . 6
class
TopSet |
17 | 2, 16 | cfv 6437 |
. . . . 5
class
(TopSet‘ndx) |
18 | | cle 11019 |
. . . . . 6
class
≤ |
19 | | cordt 17219 |
. . . . . 6
class
ordTop |
20 | 18, 19 | cfv 6437 |
. . . . 5
class
(ordTop‘ ≤ ) |
21 | 17, 20 | cop 4568 |
. . . 4
class
〈(TopSet‘ndx), (ordTop‘ ≤ )〉 |
22 | | cple 16978 |
. . . . . 6
class
le |
23 | 2, 22 | cfv 6437 |
. . . . 5
class
(le‘ndx) |
24 | 23, 18 | cop 4568 |
. . . 4
class
〈(le‘ndx), ≤ 〉 |
25 | | cds 16980 |
. . . . . 6
class
dist |
26 | 2, 25 | cfv 6437 |
. . . . 5
class
(dist‘ndx) |
27 | | vx |
. . . . . 6
setvar 𝑥 |
28 | | vy |
. . . . . 6
setvar 𝑦 |
29 | 27 | cv 1538 |
. . . . . . . 8
class 𝑥 |
30 | 28 | cv 1538 |
. . . . . . . 8
class 𝑦 |
31 | 29, 30, 18 | wbr 5075 |
. . . . . . 7
wff 𝑥 ≤ 𝑦 |
32 | 29 | cxne 12854 |
. . . . . . . 8
class
-𝑒𝑥 |
33 | 30, 32, 9 | co 7284 |
. . . . . . 7
class (𝑦 +𝑒
-𝑒𝑥) |
34 | 30 | cxne 12854 |
. . . . . . . 8
class
-𝑒𝑦 |
35 | 29, 34, 9 | co 7284 |
. . . . . . 7
class (𝑥 +𝑒
-𝑒𝑦) |
36 | 31, 33, 35 | cif 4460 |
. . . . . 6
class if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦)) |
37 | 27, 28, 5, 5, 36 | cmpo 7286 |
. . . . 5
class (𝑥 ∈ ℝ*,
𝑦 ∈
ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦))) |
38 | 26, 37 | cop 4568 |
. . . 4
class
〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦)))〉 |
39 | 21, 24, 38 | ctp 4566 |
. . 3
class
{〈(TopSet‘ndx), (ordTop‘ ≤ )〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦)))〉} |
40 | 15, 39 | cun 3886 |
. 2
class
({〈(Base‘ndx), ℝ*〉,
〈(+g‘ndx), +𝑒 〉,
〈(.r‘ndx), ·e 〉} ∪
{〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx),
≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦)))〉}) |
41 | 1, 40 | wceq 1539 |
1
wff
ℝ*𝑠 = ({〈(Base‘ndx),
ℝ*〉, 〈(+g‘ndx),
+𝑒 〉, 〈(.r‘ndx),
·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘
≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*,
𝑦 ∈
ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦)))〉}) |