MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17424
Description: The extended real number structure. Unlike df-cnfld 21280, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21280. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17422 . 2 class *𝑠
2 cnx 17122 . . . . . 6 class ndx
3 cbs 17138 . . . . . 6 class Base
42, 3cfv 6486 . . . . 5 class (Base‘ndx)
5 cxr 11167 . . . . 5 class *
64, 5cop 4585 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17179 . . . . . 6 class +g
82, 7cfv 6486 . . . . 5 class (+g‘ndx)
9 cxad 13030 . . . . 5 class +𝑒
108, 9cop 4585 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17180 . . . . . 6 class .r
122, 11cfv 6486 . . . . 5 class (.r‘ndx)
13 cxmu 13031 . . . . 5 class ·e
1412, 13cop 4585 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4583 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17185 . . . . . 6 class TopSet
172, 16cfv 6486 . . . . 5 class (TopSet‘ndx)
18 cle 11169 . . . . . 6 class
19 cordt 17421 . . . . . 6 class ordTop
2018, 19cfv 6486 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4585 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17186 . . . . . 6 class le
232, 22cfv 6486 . . . . 5 class (le‘ndx)
2423, 18cop 4585 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17188 . . . . . 6 class dist
262, 25cfv 6486 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1539 . . . . . . . 8 class 𝑥
3028cv 1539 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5095 . . . . . . 7 wff 𝑥𝑦
3229cxne 13029 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7353 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13029 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7353 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4478 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7355 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4585 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4583 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3903 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1540 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsle  17526  xrsbas  17528  xrsstr  21308  xrsex  21309  xrsadd  21310  xrsmul  21311  xrstset  21312  xrsds  21334
  Copyright terms: Public domain W3C validator