MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17472
Description: The extended real number structure. Unlike df-cnfld 21272, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21272. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17470 . 2 class *𝑠
2 cnx 17170 . . . . . 6 class ndx
3 cbs 17186 . . . . . 6 class Base
42, 3cfv 6514 . . . . 5 class (Base‘ndx)
5 cxr 11214 . . . . 5 class *
64, 5cop 4598 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17227 . . . . . 6 class +g
82, 7cfv 6514 . . . . 5 class (+g‘ndx)
9 cxad 13077 . . . . 5 class +𝑒
108, 9cop 4598 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17228 . . . . . 6 class .r
122, 11cfv 6514 . . . . 5 class (.r‘ndx)
13 cxmu 13078 . . . . 5 class ·e
1412, 13cop 4598 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4596 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17233 . . . . . 6 class TopSet
172, 16cfv 6514 . . . . 5 class (TopSet‘ndx)
18 cle 11216 . . . . . 6 class
19 cordt 17469 . . . . . 6 class ordTop
2018, 19cfv 6514 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4598 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17234 . . . . . 6 class le
232, 22cfv 6514 . . . . 5 class (le‘ndx)
2423, 18cop 4598 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17236 . . . . . 6 class dist
262, 25cfv 6514 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1539 . . . . . . . 8 class 𝑥
3028cv 1539 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5110 . . . . . . 7 wff 𝑥𝑦
3229cxne 13076 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7390 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13076 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7390 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4491 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7392 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4598 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4596 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3915 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1540 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  21300  xrsex  21301  xrsbas  21302  xrsadd  21303  xrsmul  21304  xrstset  21305  xrsle  21306  xrsds  21333
  Copyright terms: Public domain W3C validator