MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17562
Description: The extended real number structure. Unlike df-cnfld 21388, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21388. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17560 . 2 class *𝑠
2 cnx 17240 . . . . . 6 class ndx
3 cbs 17258 . . . . . 6 class Base
42, 3cfv 6573 . . . . 5 class (Base‘ndx)
5 cxr 11323 . . . . 5 class *
64, 5cop 4654 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17311 . . . . . 6 class +g
82, 7cfv 6573 . . . . 5 class (+g‘ndx)
9 cxad 13173 . . . . 5 class +𝑒
108, 9cop 4654 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17312 . . . . . 6 class .r
122, 11cfv 6573 . . . . 5 class (.r‘ndx)
13 cxmu 13174 . . . . 5 class ·e
1412, 13cop 4654 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4652 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17317 . . . . . 6 class TopSet
172, 16cfv 6573 . . . . 5 class (TopSet‘ndx)
18 cle 11325 . . . . . 6 class
19 cordt 17559 . . . . . 6 class ordTop
2018, 19cfv 6573 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4654 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17318 . . . . . 6 class le
232, 22cfv 6573 . . . . 5 class (le‘ndx)
2423, 18cop 4654 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17320 . . . . . 6 class dist
262, 25cfv 6573 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1536 . . . . . . . 8 class 𝑥
3028cv 1536 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5166 . . . . . . 7 wff 𝑥𝑦
3229cxne 13172 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7448 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13172 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7448 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4548 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7450 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4654 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4652 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3974 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1537 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  21417  xrsex  21418  xrsbas  21419  xrsadd  21420  xrsmul  21421  xrstset  21422  xrsle  21423  xrsds  21450
  Copyright terms: Public domain W3C validator