MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17222
Description: The extended real number structure. Unlike df-cnfld 20607, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 20607. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17220 . 2 class *𝑠
2 cnx 16903 . . . . . 6 class ndx
3 cbs 16921 . . . . . 6 class Base
42, 3cfv 6437 . . . . 5 class (Base‘ndx)
5 cxr 11017 . . . . 5 class *
64, 5cop 4568 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 16971 . . . . . 6 class +g
82, 7cfv 6437 . . . . 5 class (+g‘ndx)
9 cxad 12855 . . . . 5 class +𝑒
108, 9cop 4568 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 16972 . . . . . 6 class .r
122, 11cfv 6437 . . . . 5 class (.r‘ndx)
13 cxmu 12856 . . . . 5 class ·e
1412, 13cop 4568 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4566 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 16977 . . . . . 6 class TopSet
172, 16cfv 6437 . . . . 5 class (TopSet‘ndx)
18 cle 11019 . . . . . 6 class
19 cordt 17219 . . . . . 6 class ordTop
2018, 19cfv 6437 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4568 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 16978 . . . . . 6 class le
232, 22cfv 6437 . . . . 5 class (le‘ndx)
2423, 18cop 4568 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 16980 . . . . . 6 class dist
262, 25cfv 6437 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1538 . . . . . . . 8 class 𝑥
3028cv 1538 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5075 . . . . . . 7 wff 𝑥𝑦
3229cxne 12854 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7284 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 12854 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7284 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4460 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7286 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4568 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4566 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3886 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1539 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  20621  xrsex  20622  xrsbas  20623  xrsadd  20624  xrsmul  20625  xrstset  20626  xrsle  20627  xrsds  20650
  Copyright terms: Public domain W3C validator