MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17465
Description: The extended real number structure. Unlike df-cnfld 21265, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21265. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17463 . 2 class *𝑠
2 cnx 17163 . . . . . 6 class ndx
3 cbs 17179 . . . . . 6 class Base
42, 3cfv 6511 . . . . 5 class (Base‘ndx)
5 cxr 11207 . . . . 5 class *
64, 5cop 4595 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17220 . . . . . 6 class +g
82, 7cfv 6511 . . . . 5 class (+g‘ndx)
9 cxad 13070 . . . . 5 class +𝑒
108, 9cop 4595 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17221 . . . . . 6 class .r
122, 11cfv 6511 . . . . 5 class (.r‘ndx)
13 cxmu 13071 . . . . 5 class ·e
1412, 13cop 4595 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4593 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17226 . . . . . 6 class TopSet
172, 16cfv 6511 . . . . 5 class (TopSet‘ndx)
18 cle 11209 . . . . . 6 class
19 cordt 17462 . . . . . 6 class ordTop
2018, 19cfv 6511 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4595 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17227 . . . . . 6 class le
232, 22cfv 6511 . . . . 5 class (le‘ndx)
2423, 18cop 4595 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17229 . . . . . 6 class dist
262, 25cfv 6511 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1539 . . . . . . . 8 class 𝑥
3028cv 1539 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5107 . . . . . . 7 wff 𝑥𝑦
3229cxne 13069 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7387 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13069 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7387 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4488 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7389 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4595 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4593 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3912 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1540 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  21293  xrsex  21294  xrsbas  21295  xrsadd  21296  xrsmul  21297  xrstset  21298  xrsle  21299  xrsds  21326
  Copyright terms: Public domain W3C validator