MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17130
Description: The extended real number structure. Unlike df-cnfld 20511, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 20511. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17128 . 2 class *𝑠
2 cnx 16822 . . . . . 6 class ndx
3 cbs 16840 . . . . . 6 class Base
42, 3cfv 6418 . . . . 5 class (Base‘ndx)
5 cxr 10939 . . . . 5 class *
64, 5cop 4564 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 16888 . . . . . 6 class +g
82, 7cfv 6418 . . . . 5 class (+g‘ndx)
9 cxad 12775 . . . . 5 class +𝑒
108, 9cop 4564 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 16889 . . . . . 6 class .r
122, 11cfv 6418 . . . . 5 class (.r‘ndx)
13 cxmu 12776 . . . . 5 class ·e
1412, 13cop 4564 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4562 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 16894 . . . . . 6 class TopSet
172, 16cfv 6418 . . . . 5 class (TopSet‘ndx)
18 cle 10941 . . . . . 6 class
19 cordt 17127 . . . . . 6 class ordTop
2018, 19cfv 6418 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4564 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 16895 . . . . . 6 class le
232, 22cfv 6418 . . . . 5 class (le‘ndx)
2423, 18cop 4564 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 16897 . . . . . 6 class dist
262, 25cfv 6418 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1538 . . . . . . . 8 class 𝑥
3028cv 1538 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5070 . . . . . . 7 wff 𝑥𝑦
3229cxne 12774 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7255 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 12774 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7255 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4456 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7257 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4564 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4562 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3881 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1539 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  20524  xrsex  20525  xrsbas  20526  xrsadd  20527  xrsmul  20528  xrstset  20529  xrsle  20530  xrsds  20553
  Copyright terms: Public domain W3C validator