MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17514
Description: The extended real number structure. Unlike df-cnfld 21314, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21314. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17512 . 2 class *𝑠
2 cnx 17210 . . . . . 6 class ndx
3 cbs 17226 . . . . . 6 class Base
42, 3cfv 6530 . . . . 5 class (Base‘ndx)
5 cxr 11266 . . . . 5 class *
64, 5cop 4607 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17269 . . . . . 6 class +g
82, 7cfv 6530 . . . . 5 class (+g‘ndx)
9 cxad 13124 . . . . 5 class +𝑒
108, 9cop 4607 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17270 . . . . . 6 class .r
122, 11cfv 6530 . . . . 5 class (.r‘ndx)
13 cxmu 13125 . . . . 5 class ·e
1412, 13cop 4607 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4605 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17275 . . . . . 6 class TopSet
172, 16cfv 6530 . . . . 5 class (TopSet‘ndx)
18 cle 11268 . . . . . 6 class
19 cordt 17511 . . . . . 6 class ordTop
2018, 19cfv 6530 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4607 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17276 . . . . . 6 class le
232, 22cfv 6530 . . . . 5 class (le‘ndx)
2423, 18cop 4607 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17278 . . . . . 6 class dist
262, 25cfv 6530 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1539 . . . . . . . 8 class 𝑥
3028cv 1539 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5119 . . . . . . 7 wff 𝑥𝑦
3229cxne 13123 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7403 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13123 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7403 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4500 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7405 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4607 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4605 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3924 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1540 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  21342  xrsex  21343  xrsbas  21344  xrsadd  21345  xrsmul  21346  xrstset  21347  xrsle  21348  xrsds  21375
  Copyright terms: Public domain W3C validator