MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17548
Description: The extended real number structure. Unlike df-cnfld 21382, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21382. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17546 . 2 class *𝑠
2 cnx 17226 . . . . . 6 class ndx
3 cbs 17244 . . . . . 6 class Base
42, 3cfv 6562 . . . . 5 class (Base‘ndx)
5 cxr 11291 . . . . 5 class *
64, 5cop 4636 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17297 . . . . . 6 class +g
82, 7cfv 6562 . . . . 5 class (+g‘ndx)
9 cxad 13149 . . . . 5 class +𝑒
108, 9cop 4636 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17298 . . . . . 6 class .r
122, 11cfv 6562 . . . . 5 class (.r‘ndx)
13 cxmu 13150 . . . . 5 class ·e
1412, 13cop 4636 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4634 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17303 . . . . . 6 class TopSet
172, 16cfv 6562 . . . . 5 class (TopSet‘ndx)
18 cle 11293 . . . . . 6 class
19 cordt 17545 . . . . . 6 class ordTop
2018, 19cfv 6562 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4636 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17304 . . . . . 6 class le
232, 22cfv 6562 . . . . 5 class (le‘ndx)
2423, 18cop 4636 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17306 . . . . . 6 class dist
262, 25cfv 6562 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1535 . . . . . . . 8 class 𝑥
3028cv 1535 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5147 . . . . . . 7 wff 𝑥𝑦
3229cxne 13148 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7430 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13148 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7430 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4530 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7432 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4636 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4634 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3960 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1536 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  21411  xrsex  21412  xrsbas  21413  xrsadd  21414  xrsmul  21415  xrstset  21416  xrsle  21417  xrsds  21444
  Copyright terms: Public domain W3C validator