MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17448
Description: The extended real number structure. Unlike df-cnfld 20945, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 20945. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17446 . 2 class *𝑠
2 cnx 17126 . . . . . 6 class ndx
3 cbs 17144 . . . . . 6 class Base
42, 3cfv 6544 . . . . 5 class (Base‘ndx)
5 cxr 11247 . . . . 5 class *
64, 5cop 4635 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17197 . . . . . 6 class +g
82, 7cfv 6544 . . . . 5 class (+g‘ndx)
9 cxad 13090 . . . . 5 class +𝑒
108, 9cop 4635 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17198 . . . . . 6 class .r
122, 11cfv 6544 . . . . 5 class (.r‘ndx)
13 cxmu 13091 . . . . 5 class ·e
1412, 13cop 4635 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4633 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17203 . . . . . 6 class TopSet
172, 16cfv 6544 . . . . 5 class (TopSet‘ndx)
18 cle 11249 . . . . . 6 class
19 cordt 17445 . . . . . 6 class ordTop
2018, 19cfv 6544 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4635 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17204 . . . . . 6 class le
232, 22cfv 6544 . . . . 5 class (le‘ndx)
2423, 18cop 4635 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17206 . . . . . 6 class dist
262, 25cfv 6544 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1541 . . . . . . . 8 class 𝑥
3028cv 1541 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5149 . . . . . . 7 wff 𝑥𝑦
3229cxne 13089 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7409 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13089 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7409 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4529 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7411 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4635 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4633 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3947 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1542 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  20959  xrsex  20960  xrsbas  20961  xrsadd  20962  xrsmul  20963  xrstset  20964  xrsle  20965  xrsds  20988
  Copyright terms: Public domain W3C validator