MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 17408
Description: The extended real number structure. Unlike df-cnfld 21294, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 21294. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 17406 . 2 class *𝑠
2 cnx 17106 . . . . . 6 class ndx
3 cbs 17122 . . . . . 6 class Base
42, 3cfv 6486 . . . . 5 class (Base‘ndx)
5 cxr 11152 . . . . 5 class *
64, 5cop 4581 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 17163 . . . . . 6 class +g
82, 7cfv 6486 . . . . 5 class (+g‘ndx)
9 cxad 13011 . . . . 5 class +𝑒
108, 9cop 4581 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 17164 . . . . . 6 class .r
122, 11cfv 6486 . . . . 5 class (.r‘ndx)
13 cxmu 13012 . . . . 5 class ·e
1412, 13cop 4581 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4579 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 17169 . . . . . 6 class TopSet
172, 16cfv 6486 . . . . 5 class (TopSet‘ndx)
18 cle 11154 . . . . . 6 class
19 cordt 17405 . . . . . 6 class ordTop
2018, 19cfv 6486 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4581 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 17170 . . . . . 6 class le
232, 22cfv 6486 . . . . 5 class (le‘ndx)
2423, 18cop 4581 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 17172 . . . . . 6 class dist
262, 25cfv 6486 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1540 . . . . . . . 8 class 𝑥
3028cv 1540 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 5093 . . . . . . 7 wff 𝑥𝑦
3229cxne 13010 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 7352 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 13010 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 7352 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4474 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpo 7354 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4581 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4579 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3896 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1541 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsle  17510  xrsbas  17512  xrsstr  21322  xrsex  21323  xrsadd  21324  xrsmul  21325  xrstset  21326  xrsds  21348
  Copyright terms: Public domain W3C validator