MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtval Structured version   Visualization version   GIF version

Theorem ordtval 22913
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
ordtval.3 𝐡 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})
Assertion
Ref Expression
ordtval (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (𝐴 βˆͺ 𝐡)))))
Distinct variable groups:   π‘₯,𝑦,𝑅   π‘₯,𝑋,𝑦   π‘₯,𝑉
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑦)   𝑉(𝑦)

Proof of Theorem ordtval
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑅 ∈ 𝑉 β†’ 𝑅 ∈ V)
2 dmeq 5903 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ dom π‘Ÿ = dom 𝑅)
3 ordtval.1 . . . . . . . 8 𝑋 = dom 𝑅
42, 3eqtr4di 2790 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ dom π‘Ÿ = 𝑋)
54sneqd 4640 . . . . . 6 (π‘Ÿ = 𝑅 β†’ {dom π‘Ÿ} = {𝑋})
6 rnun 6145 . . . . . . 7 ran ((π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦})) = (ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}))
7 breq 5150 . . . . . . . . . . . . 13 (π‘Ÿ = 𝑅 β†’ (π‘¦π‘Ÿπ‘₯ ↔ 𝑦𝑅π‘₯))
87notbid 317 . . . . . . . . . . . 12 (π‘Ÿ = 𝑅 β†’ (Β¬ π‘¦π‘Ÿπ‘₯ ↔ Β¬ 𝑦𝑅π‘₯))
94, 8rabeqbidv 3449 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯} = {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
104, 9mpteq12dv 5239 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
1110rneqd 5937 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
12 ordtval.2 . . . . . . . . 9 𝐴 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
1311, 12eqtr4di 2790 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) = 𝐴)
14 breq 5150 . . . . . . . . . . . . 13 (π‘Ÿ = 𝑅 β†’ (π‘₯π‘Ÿπ‘¦ ↔ π‘₯𝑅𝑦))
1514notbid 317 . . . . . . . . . . . 12 (π‘Ÿ = 𝑅 β†’ (Β¬ π‘₯π‘Ÿπ‘¦ ↔ Β¬ π‘₯𝑅𝑦))
164, 15rabeqbidv 3449 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦} = {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})
174, 16mpteq12dv 5239 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}) = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))
1817rneqd 5937 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}) = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))
19 ordtval.3 . . . . . . . . 9 𝐡 = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})
2018, 19eqtr4di 2790 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}) = 𝐡)
2113, 20uneq12d 4164 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ ran (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦})) = (𝐴 βˆͺ 𝐡))
226, 21eqtrid 2784 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ran ((π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦})) = (𝐴 βˆͺ 𝐡))
235, 22uneq12d 4164 . . . . 5 (π‘Ÿ = 𝑅 β†’ ({dom π‘Ÿ} βˆͺ ran ((π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}))) = ({𝑋} βˆͺ (𝐴 βˆͺ 𝐡)))
2423fveq2d 6895 . . . 4 (π‘Ÿ = 𝑅 β†’ (fiβ€˜({dom π‘Ÿ} βˆͺ ran ((π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦})))) = (fiβ€˜({𝑋} βˆͺ (𝐴 βˆͺ 𝐡))))
2524fveq2d 6895 . . 3 (π‘Ÿ = 𝑅 β†’ (topGenβ€˜(fiβ€˜({dom π‘Ÿ} βˆͺ ran ((π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}))))) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (𝐴 βˆͺ 𝐡)))))
26 df-ordt 17451 . . 3 ordTop = (π‘Ÿ ∈ V ↦ (topGenβ€˜(fiβ€˜({dom π‘Ÿ} βˆͺ ran ((π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}))))))
27 fvex 6904 . . 3 (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (𝐴 βˆͺ 𝐡)))) ∈ V
2825, 26, 27fvmpt 6998 . 2 (𝑅 ∈ V β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (𝐴 βˆͺ 𝐡)))))
291, 28syl 17 1 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (𝐴 βˆͺ 𝐡)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βˆͺ cun 3946  {csn 4628   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676  ran crn 5677  β€˜cfv 6543  ficfi 9407  topGenctg 17387  ordTopcordt 17449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-ordt 17451
This theorem is referenced by:  ordttopon  22917  ordtopn1  22918  ordtopn2  22919  ordtcnv  22925  ordtrest  22926  ordtrest2  22928  leordtval2  22936  ordthmeolem  23525  ordtprsval  33184  ordtrestNEW  33187
  Copyright terms: Public domain W3C validator