Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. 2
β’ (π
β π β π
β V) |
2 | | dmeq 5903 |
. . . . . . . 8
β’ (π = π
β dom π = dom π
) |
3 | | ordtval.1 |
. . . . . . . 8
β’ π = dom π
|
4 | 2, 3 | eqtr4di 2790 |
. . . . . . 7
β’ (π = π
β dom π = π) |
5 | 4 | sneqd 4640 |
. . . . . 6
β’ (π = π
β {dom π} = {π}) |
6 | | rnun 6145 |
. . . . . . 7
β’ ran
((π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦})) = (ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦})) |
7 | | breq 5150 |
. . . . . . . . . . . . 13
β’ (π = π
β (π¦ππ₯ β π¦π
π₯)) |
8 | 7 | notbid 317 |
. . . . . . . . . . . 12
β’ (π = π
β (Β¬ π¦ππ₯ β Β¬ π¦π
π₯)) |
9 | 4, 8 | rabeqbidv 3449 |
. . . . . . . . . . 11
β’ (π = π
β {π¦ β dom π β£ Β¬ π¦ππ₯} = {π¦ β π β£ Β¬ π¦π
π₯}) |
10 | 4, 9 | mpteq12dv 5239 |
. . . . . . . . . 10
β’ (π = π
β (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) = (π₯ β π β¦ {π¦ β π β£ Β¬ π¦π
π₯})) |
11 | 10 | rneqd 5937 |
. . . . . . . . 9
β’ (π = π
β ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) = ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦π
π₯})) |
12 | | ordtval.2 |
. . . . . . . . 9
β’ π΄ = ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦π
π₯}) |
13 | 11, 12 | eqtr4di 2790 |
. . . . . . . 8
β’ (π = π
β ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) = π΄) |
14 | | breq 5150 |
. . . . . . . . . . . . 13
β’ (π = π
β (π₯ππ¦ β π₯π
π¦)) |
15 | 14 | notbid 317 |
. . . . . . . . . . . 12
β’ (π = π
β (Β¬ π₯ππ¦ β Β¬ π₯π
π¦)) |
16 | 4, 15 | rabeqbidv 3449 |
. . . . . . . . . . 11
β’ (π = π
β {π¦ β dom π β£ Β¬ π₯ππ¦} = {π¦ β π β£ Β¬ π₯π
π¦}) |
17 | 4, 16 | mpteq12dv 5239 |
. . . . . . . . . 10
β’ (π = π
β (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦}) = (π₯ β π β¦ {π¦ β π β£ Β¬ π₯π
π¦})) |
18 | 17 | rneqd 5937 |
. . . . . . . . 9
β’ (π = π
β ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦}) = ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯π
π¦})) |
19 | | ordtval.3 |
. . . . . . . . 9
β’ π΅ = ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯π
π¦}) |
20 | 18, 19 | eqtr4di 2790 |
. . . . . . . 8
β’ (π = π
β ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦}) = π΅) |
21 | 13, 20 | uneq12d 4164 |
. . . . . . 7
β’ (π = π
β (ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦})) = (π΄ βͺ π΅)) |
22 | 6, 21 | eqtrid 2784 |
. . . . . 6
β’ (π = π
β ran ((π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦})) = (π΄ βͺ π΅)) |
23 | 5, 22 | uneq12d 4164 |
. . . . 5
β’ (π = π
β ({dom π} βͺ ran ((π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦}))) = ({π} βͺ (π΄ βͺ π΅))) |
24 | 23 | fveq2d 6895 |
. . . 4
β’ (π = π
β (fiβ({dom π} βͺ ran ((π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦})))) = (fiβ({π} βͺ (π΄ βͺ π΅)))) |
25 | 24 | fveq2d 6895 |
. . 3
β’ (π = π
β (topGenβ(fiβ({dom π} βͺ ran ((π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦}))))) = (topGenβ(fiβ({π} βͺ (π΄ βͺ π΅))))) |
26 | | df-ordt 17451 |
. . 3
β’ ordTop =
(π β V β¦
(topGenβ(fiβ({dom π} βͺ ran ((π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦})))))) |
27 | | fvex 6904 |
. . 3
β’
(topGenβ(fiβ({π} βͺ (π΄ βͺ π΅)))) β V |
28 | 25, 26, 27 | fvmpt 6998 |
. 2
β’ (π
β V β
(ordTopβπ
) =
(topGenβ(fiβ({π} βͺ (π΄ βͺ π΅))))) |
29 | 1, 28 | syl 17 |
1
β’ (π
β π β (ordTopβπ
) = (topGenβ(fiβ({π} βͺ (π΄ βͺ π΅))))) |