MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtval Structured version   Visualization version   GIF version

Theorem ordtval 23099
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
Assertion
Ref Expression
ordtval (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem ordtval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝑅𝑉𝑅 ∈ V)
2 dmeq 5838 . . . . . . . 8 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 ordtval.1 . . . . . . . 8 𝑋 = dom 𝑅
42, 3eqtr4di 2784 . . . . . . 7 (𝑟 = 𝑅 → dom 𝑟 = 𝑋)
54sneqd 4583 . . . . . 6 (𝑟 = 𝑅 → {dom 𝑟} = {𝑋})
6 rnun 6087 . . . . . . 7 ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))
7 breq 5088 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
87notbid 318 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑦𝑟𝑥 ↔ ¬ 𝑦𝑅𝑥))
94, 8rabeqbidv 3413 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
104, 9mpteq12dv 5173 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
1110rneqd 5873 . . . . . . . . 9 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
12 ordtval.2 . . . . . . . . 9 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
1311, 12eqtr4di 2784 . . . . . . . 8 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = 𝐴)
14 breq 5088 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
1514notbid 318 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑥𝑟𝑦 ↔ ¬ 𝑥𝑅𝑦))
164, 15rabeqbidv 3413 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
174, 16mpteq12dv 5173 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
1817rneqd 5873 . . . . . . . . 9 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
19 ordtval.3 . . . . . . . . 9 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
2018, 19eqtr4di 2784 . . . . . . . 8 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = 𝐵)
2113, 20uneq12d 4114 . . . . . . 7 (𝑟 = 𝑅 → (ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (𝐴𝐵))
226, 21eqtrid 2778 . . . . . 6 (𝑟 = 𝑅 → ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (𝐴𝐵))
235, 22uneq12d 4114 . . . . 5 (𝑟 = 𝑅 → ({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))) = ({𝑋} ∪ (𝐴𝐵)))
2423fveq2d 6821 . . . 4 (𝑟 = 𝑅 → (fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))) = (fi‘({𝑋} ∪ (𝐴𝐵))))
2524fveq2d 6821 . . 3 (𝑟 = 𝑅 → (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
26 df-ordt 17400 . . 3 ordTop = (𝑟 ∈ V ↦ (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))))
27 fvex 6830 . . 3 (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))) ∈ V
2825, 26, 27fvmpt 6924 . 2 (𝑅 ∈ V → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
291, 28syl 17 1 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cun 3895  {csn 4571   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  cfv 6476  ficfi 9289  topGenctg 17336  ordTopcordt 17398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fv 6484  df-ordt 17400
This theorem is referenced by:  ordttopon  23103  ordtopn1  23104  ordtopn2  23105  ordtcnv  23111  ordtrest  23112  ordtrest2  23114  leordtval2  23122  ordthmeolem  23711  ordtprsval  33923  ordtrestNEW  33926
  Copyright terms: Public domain W3C validator