MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtval Structured version   Visualization version   GIF version

Theorem ordtval 21727
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
Assertion
Ref Expression
ordtval (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem ordtval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3513 . 2 (𝑅𝑉𝑅 ∈ V)
2 dmeq 5766 . . . . . . . 8 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 ordtval.1 . . . . . . . 8 𝑋 = dom 𝑅
42, 3syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → dom 𝑟 = 𝑋)
54sneqd 4571 . . . . . 6 (𝑟 = 𝑅 → {dom 𝑟} = {𝑋})
6 rnun 5998 . . . . . . 7 ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))
7 breq 5060 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
87notbid 319 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑦𝑟𝑥 ↔ ¬ 𝑦𝑅𝑥))
94, 8rabeqbidv 3486 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
104, 9mpteq12dv 5143 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
1110rneqd 5802 . . . . . . . . 9 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
12 ordtval.2 . . . . . . . . 9 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
1311, 12syl6eqr 2874 . . . . . . . 8 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = 𝐴)
14 breq 5060 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
1514notbid 319 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑥𝑟𝑦 ↔ ¬ 𝑥𝑅𝑦))
164, 15rabeqbidv 3486 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
174, 16mpteq12dv 5143 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
1817rneqd 5802 . . . . . . . . 9 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
19 ordtval.3 . . . . . . . . 9 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
2018, 19syl6eqr 2874 . . . . . . . 8 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = 𝐵)
2113, 20uneq12d 4139 . . . . . . 7 (𝑟 = 𝑅 → (ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (𝐴𝐵))
226, 21syl5eq 2868 . . . . . 6 (𝑟 = 𝑅 → ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (𝐴𝐵))
235, 22uneq12d 4139 . . . . 5 (𝑟 = 𝑅 → ({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))) = ({𝑋} ∪ (𝐴𝐵)))
2423fveq2d 6668 . . . 4 (𝑟 = 𝑅 → (fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))) = (fi‘({𝑋} ∪ (𝐴𝐵))))
2524fveq2d 6668 . . 3 (𝑟 = 𝑅 → (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
26 df-ordt 16764 . . 3 ordTop = (𝑟 ∈ V ↦ (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))))
27 fvex 6677 . . 3 (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))) ∈ V
2825, 26, 27fvmpt 6762 . 2 (𝑅 ∈ V → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
291, 28syl 17 1 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1528  wcel 2105  {crab 3142  Vcvv 3495  cun 3933  {csn 4559   class class class wbr 5058  cmpt 5138  dom cdm 5549  ran crn 5550  cfv 6349  ficfi 8863  topGenctg 16701  ordTopcordt 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fv 6357  df-ordt 16764
This theorem is referenced by:  ordttopon  21731  ordtopn1  21732  ordtopn2  21733  ordtcnv  21739  ordtrest  21740  ordtrest2  21742  leordtval2  21750  ordthmeolem  22339  ordtprsval  31061  ordtrestNEW  31064
  Copyright terms: Public domain W3C validator