Detailed syntax breakdown of Definition df-ovol
| Step | Hyp | Ref
| Expression |
| 1 | | covol 25497 |
. 2
class
vol* |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cr 11154 |
. . . 4
class
ℝ |
| 4 | 3 | cpw 4600 |
. . 3
class 𝒫
ℝ |
| 5 | 2 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 6 | | cioo 13387 |
. . . . . . . . . . 11
class
(,) |
| 7 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 8 | 7 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 9 | 6, 8 | ccom 5689 |
. . . . . . . . . 10
class ((,)
∘ 𝑓) |
| 10 | 9 | crn 5686 |
. . . . . . . . 9
class ran ((,)
∘ 𝑓) |
| 11 | 10 | cuni 4907 |
. . . . . . . 8
class ∪ ran ((,) ∘ 𝑓) |
| 12 | 5, 11 | wss 3951 |
. . . . . . 7
wff 𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) |
| 13 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 14 | 13 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 15 | | caddc 11158 |
. . . . . . . . . . 11
class
+ |
| 16 | | cabs 15273 |
. . . . . . . . . . . . 13
class
abs |
| 17 | | cmin 11492 |
. . . . . . . . . . . . 13
class
− |
| 18 | 16, 17 | ccom 5689 |
. . . . . . . . . . . 12
class (abs
∘ − ) |
| 19 | 18, 8 | ccom 5689 |
. . . . . . . . . . 11
class ((abs
∘ − ) ∘ 𝑓) |
| 20 | | c1 11156 |
. . . . . . . . . . 11
class
1 |
| 21 | 15, 19, 20 | cseq 14042 |
. . . . . . . . . 10
class seq1( + ,
((abs ∘ − ) ∘ 𝑓)) |
| 22 | 21 | crn 5686 |
. . . . . . . . 9
class ran seq1(
+ , ((abs ∘ − ) ∘ 𝑓)) |
| 23 | | cxr 11294 |
. . . . . . . . 9
class
ℝ* |
| 24 | | clt 11295 |
. . . . . . . . 9
class
< |
| 25 | 22, 23, 24 | csup 9480 |
. . . . . . . 8
class sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
) |
| 26 | 14, 25 | wceq 1540 |
. . . . . . 7
wff 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
) |
| 27 | 12, 26 | wa 395 |
. . . . . 6
wff (𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) |
| 28 | | cle 11296 |
. . . . . . . 8
class
≤ |
| 29 | 3, 3 | cxp 5683 |
. . . . . . . 8
class (ℝ
× ℝ) |
| 30 | 28, 29 | cin 3950 |
. . . . . . 7
class ( ≤
∩ (ℝ × ℝ)) |
| 31 | | cn 12266 |
. . . . . . 7
class
ℕ |
| 32 | | cmap 8866 |
. . . . . . 7
class
↑m |
| 33 | 30, 31, 32 | co 7431 |
. . . . . 6
class (( ≤
∩ (ℝ × ℝ)) ↑m ℕ) |
| 34 | 27, 7, 33 | wrex 3070 |
. . . . 5
wff
∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) |
| 35 | 34, 13, 23 | crab 3436 |
. . . 4
class {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} |
| 36 | 35, 23, 24 | cinf 9481 |
. . 3
class
inf({𝑦 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < ) |
| 37 | 2, 4, 36 | cmpt 5225 |
. 2
class (𝑥 ∈ 𝒫 ℝ
↦ inf({𝑦 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) |
| 38 | 1, 37 | wceq 1540 |
1
wff vol* =
(𝑥 ∈ 𝒫 ℝ
↦ inf({𝑦 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) |