HomeHome Metamath Proof Explorer
Theorem List (p. 253 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44899)
 

Theorem List for Metamath Proof Explorer - 25201-25300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreeflogd 25201 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
 
Theoremrelogmuld 25202 The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵)))
 
Theoremrelogdivd 25203 The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵)))
 
Theoremlogled 25204 Natural logarithm preserves . (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵)))
 
Theoremrelogefd 25205 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (log‘(exp‘𝐴)) = 𝐴)
 
Theoremrplogcld 25206 Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)       (𝜑 → (log‘𝐴) ∈ ℝ+)
 
Theoremlogge0d 25207 The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 ≤ 𝐴)       (𝜑 → 0 ≤ (log‘𝐴))
 
Theoremlogge0b 25208 The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → (0 ≤ (log‘𝐴) ↔ 1 ≤ 𝐴))
 
Theoremloggt0b 25209 The logarithm of a number is positive iff the number is greater than 1. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → (0 < (log‘𝐴) ↔ 1 < 𝐴))
 
Theoremlogle1b 25210 The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ 1 ↔ 𝐴 ≤ e))
 
Theoremloglt1b 25211 The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → ((log‘𝐴) < 1 ↔ 𝐴 < e))
 
Theoremdivlogrlim 25212 The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.)
(𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
 
Theoremlogno1 25213 The logarithm function is not eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 30-May-2016.)
¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
 
Theoremdvrelog 25214 The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.)
(ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
 
Theoremrelogcn 25215 The real logarithm function is continuous. (Contributed by Mario Carneiro, 17-Feb-2015.)
(log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
 
Theoremellogdm 25216 Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
 
Theoremlogdmn0 25217 A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (𝐴𝐷𝐴 ≠ 0)
 
Theoremlogdmnrp 25218 A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)
 
Theoremlogdmss 25219 The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       𝐷 ⊆ (ℂ ∖ {0})
 
Theoremlogcnlem2 25220 Lemma for logcn 25224. (Contributed by Mario Carneiro, 25-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))    &   𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))    &   𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))    &   (𝜑𝐴𝐷)    &   (𝜑𝑅 ∈ ℝ+)       (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ∈ ℝ+)
 
Theoremlogcnlem3 25221 Lemma for logcn 25224. (Contributed by Mario Carneiro, 25-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))    &   𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))    &   𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))    &   (𝜑𝐴𝐷)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑𝐵𝐷)    &   (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))       (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
 
Theoremlogcnlem4 25222 Lemma for logcn 25224. (Contributed by Mario Carneiro, 25-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))    &   𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))    &   𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))    &   (𝜑𝐴𝐷)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑𝐵𝐷)    &   (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))       (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)
 
Theoremlogcnlem5 25223* Lemma for logcn 25224. (Contributed by Mario Carneiro, 18-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (𝑥𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷cn→ℝ)
 
Theoremlogcn 25224 The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
 
Theoremdvloglem 25225 Lemma for dvlog 25228. (Contributed by Mario Carneiro, 24-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (log “ 𝐷) ∈ (TopOpen‘ℂfld)
 
Theoremlogdmopn 25226 The "continuous domain" of log is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       𝐷 ∈ (TopOpen‘ℂfld)
 
Theoremlogf1o2 25227 The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))
 
Theoremdvlog 25228* The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.)
𝐷 = (ℂ ∖ (-∞(,]0))       (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
 
Theoremdvlog2lem 25229 Lemma for dvlog2 25230. (Contributed by Mario Carneiro, 1-Mar-2015.)
𝑆 = (1(ball‘(abs ∘ − ))1)       𝑆 ⊆ (ℂ ∖ (-∞(,]0))
 
Theoremdvlog2 25230* The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 25228. (Contributed by Mario Carneiro, 1-Mar-2015.)
𝑆 = (1(ball‘(abs ∘ − ))1)       (ℂ D (log ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / 𝑥))
 
Theoremadvlog 25231 The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.)
(ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
 
Theoremadvlogexp 25232* The antiderivative of a power of the logarithm. (Set 𝐴 = 1 and multiply by (-1)↑𝑁 · 𝑁! to get the antiderivative of log(𝑥)↑𝑁 itself.) (Contributed by Mario Carneiro, 22-May-2016.)
((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁))))
 
Theoremefopnlem1 25233 Lemma for efopn 25235. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
(((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) < π)
 
Theoremefopnlem2 25234 Lemma for efopn 25235. (Contributed by Mario Carneiro, 2-May-2015.)
𝐽 = (TopOpen‘ℂfld)       ((𝑅 ∈ ℝ+𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽)
 
Theoremefopn 25235 The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.)
𝐽 = (TopOpen‘ℂfld)       (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)
 
Theoremlogtayllem 25236* Lemma for logtayl 25237. (Contributed by Mario Carneiro, 1-Apr-2015.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
 
Theoremlogtayl 25237* The Taylor series for -log(1 − 𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴)))
 
Theoremlogtaylsum 25238* The Taylor series for -log(1 − 𝐴), as an infinite sum. (Contributed by Mario Carneiro, 31-Mar-2015.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ ((𝐴𝑘) / 𝑘) = -(log‘(1 − 𝐴)))
 
Theoremlogtayl2 25239* Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
𝑆 = (1(ball‘(abs ∘ − ))1)       (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
 
Theoremlogccv 25240 The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.)
(((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
 
Theoremcxpval 25241 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
 
Theoremcxpef 25242 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
 
Theorem0cxp 25243 Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)
 
Theoremcxpexpz 25244 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
Theoremcxpexp 25245 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
Theoremlogcxp 25246 Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
 
Theoremcxp0 25247 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (𝐴𝑐0) = 1)
 
Theoremcxp1 25248 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (𝐴𝑐1) = 𝐴)
 
Theorem1cxp 25249 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (1↑𝑐𝐴) = 1)
 
Theoremecxp 25250 Write the exponential function as an exponent to the power e. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (e↑𝑐𝐴) = (exp‘𝐴))
 
Theoremcxpcl 25251 Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
 
Theoremrecxpcl 25252 Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ)
 
Theoremrpcxpcl 25253 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ+)
 
Theoremcxpne0 25254 Complex exponentiation is nonzero if its mantissa is nonzero. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ≠ 0)
 
Theoremcxpeq0 25255 Complex exponentiation is zero iff the mantissa is zero and the exponent is nonzero. (Contributed by Mario Carneiro, 23-Apr-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 ≠ 0)))
 
Theoremcxpadd 25256 Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 + 𝐶)) = ((𝐴𝑐𝐵) · (𝐴𝑐𝐶)))
 
Theoremcxpp1 25257 Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 + 1)) = ((𝐴𝑐𝐵) · 𝐴))
 
Theoremcxpneg 25258 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐-𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremcxpsub 25259 Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵𝐶)) = ((𝐴𝑐𝐵) / (𝐴𝑐𝐶)))
 
Theoremcxpge0 25260 Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → 0 ≤ (𝐴𝑐𝐵))
 
Theoremmulcxplem 25261 Lemma for mulcxp 25262. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (0↑𝑐𝐶) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶)))
 
Theoremmulcxp 25262 Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
 
Theoremcxprec 25263 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremdivcxp 25264 Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))
 
Theoremcxpmul 25265 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))
 
Theoremcxpmul2 25266 Product of exponents law for complex exponentiation. Variation on cxpmul 25265 with more general conditions on 𝐴 and 𝐵 when 𝐶 is an integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
 
Theoremcxproot 25267 The complex power function allows us to write n-th roots via the idiom 𝐴𝑐(1 / 𝑁). (Contributed by Mario Carneiro, 6-May-2015.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑐(1 / 𝑁))↑𝑁) = 𝐴)
 
Theoremcxpmul2z 25268 Generalize cxpmul2 25266 to negative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℤ)) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
 
Theoremabscxp 25269 Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(𝐴𝑐𝐵)) = (𝐴𝑐(ℜ‘𝐵)))
 
Theoremabscxp2 25270 Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵))
 
Theoremcxplt 25271 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐵) < (𝐴𝑐𝐶)))
 
Theoremcxple 25272 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵𝐶 ↔ (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶)))
 
Theoremcxplea 25273 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 10-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵𝐶) → (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶))
 
Theoremcxple2 25274 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
 
Theoremcxplt2 25275 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑐𝐶) < (𝐵𝑐𝐶)))
 
Theoremcxple2a 25276 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐶) ∧ 𝐴𝐵) → (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))
 
Theoremcxplt3 25277 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
(((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))
 
Theoremcxple3 25278 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
(((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵𝐶 ↔ (𝐴𝑐𝐶) ≤ (𝐴𝑐𝐵)))
 
Theoremcxpsqrtlem 25279 Lemma for cxpsqrt 25280. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
 
Theoremcxpsqrt 25280 The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
 
Theoremlogsqrt 25281 Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.)
(𝐴 ∈ ℝ+ → (log‘(√‘𝐴)) = ((log‘𝐴) / 2))
 
Theoremcxp0d 25282 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴𝑐0) = 1)
 
Theoremcxp1d 25283 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴𝑐1) = 𝐴)
 
Theorem1cxpd 25284 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1↑𝑐𝐴) = 1)
 
Theoremcxpcld 25285 Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℂ)
 
Theoremcxpmul2d 25286 Product of exponents law for complex exponentiation. Variation on cxpmul 25265 with more general conditions on 𝐴 and 𝐵 when 𝐶 is an integer. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℕ0)       (𝜑 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
 
Theorem0cxpd 25287 Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (0↑𝑐𝐴) = 0)
 
Theoremcxpexpzd 25288 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴𝑐𝐵) = (𝐴𝐵))
 
Theoremcxpefd 25289 Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
 
Theoremcxpne0d 25290 Complex exponentiation is nonzero if its mantissa is nonzero. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝑐𝐵) ≠ 0)
 
Theoremcxpp1d 25291 Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝑐(𝐵 + 1)) = ((𝐴𝑐𝐵) · 𝐴))
 
Theoremcxpnegd 25292 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝑐-𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremcxpmul2zd 25293 Generalize cxpmul2 25266 to negative integers. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℤ)       (𝜑 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
 
Theoremcxpaddd 25294 Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴𝑐(𝐵 + 𝐶)) = ((𝐴𝑐𝐵) · (𝐴𝑐𝐶)))
 
Theoremcxpsubd 25295 Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴𝑐(𝐵𝐶)) = ((𝐴𝑐𝐵) / (𝐴𝑐𝐶)))
 
Theoremcxpltd 25296 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐵) < (𝐴𝑐𝐶)))
 
Theoremcxpled 25297 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵𝐶 ↔ (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶)))
 
Theoremcxplead 25298 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵𝐶)       (𝜑 → (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶))
 
Theoremdivcxpd 25299 Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))
 
Theoremrecxpcld 25300 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℝ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44899
  Copyright terms: Public domain < Previous  Next >