![]() |
Metamath
Proof Explorer Theorem List (p. 253 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | zclmncvs 25201 | The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
⊢ 𝑍 = (ringLMod‘ℤring) ⇒ ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) | ||
This section characterizes normed subcomplex vector spaces as subcomplex vector spaces which are also normed vector spaces (that is, normed groups with a positively homogeneous norm). For the moment, there is no need of a special token to represent their class, so we only use the characterization isncvsngp 25202. Most theorems for normed subcomplex vector spaces have a label containing "ncvs". The idiom 𝑊 ∈ (NrmVec ∩ ℂVec) is used in the following to say that 𝑊 is a normed subcomplex vector space, i.e., a subcomplex vector space which is also a normed vector space. | ||
Theorem | isncvsngp 25202* | A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) | ||
Theorem | isncvsngpd 25203* | Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝑊 ∈ NrmGrp) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑘 ∈ 𝐾)) → (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) ⇒ ⊢ (𝜑 → 𝑊 ∈ (NrmVec ∩ ℂVec)) | ||
Theorem | ncvsi 25204* | The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) | ||
Theorem | ncvsprp 25205 | Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | ncvsge0 25206 | The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (𝐴 · (𝑁‘𝐵))) | ||
Theorem | ncvsm1 25207 | The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁‘𝐴)) | ||
Theorem | ncvsdif 25208 | The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴)))) | ||
Theorem | ncvspi 25209 | The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴)))) | ||
Theorem | ncvs1 25210 | From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = ( ·𝑠 ‘𝐺) & ⊢ 𝐹 = (Scalar‘𝐺) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 0 ) ∧ (1 / (𝑁‘𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁‘𝐴)) · 𝐴)) = 1) | ||
Theorem | cnrnvc 25211 | The module of complex numbers (as a module over itself) is a normed vector space over itself. The vector operation is +, and the scalar product is ·, and the norm function is abs. (Contributed by AV, 9-Oct-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ NrmVec | ||
Theorem | cnncvs 25212 | The module of complex numbers (as a module over itself) is a normed subcomplex vector space. The vector operation is +, the scalar product is ·, and the norm is abs (see cnnm 25213) . (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 9-Oct-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ (NrmVec ∩ ℂVec) | ||
Theorem | cnnm 25213 | The norm of the normed subcomplex vector space of complex numbers is the absolute value. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ (norm‘𝐶) = abs | ||
Theorem | ncvspds 25214 | Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) | ||
Theorem | cnindmet 25215 | The metric induced on the complex numbers. cnmet 24813 proves that it is a metric. The induced metric is identical with the original metric on the complex numbers, see cnfldds 21399 and also cnmet 24813. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by AV, 17-Oct-2021.) |
⊢ 𝑇 = (ℂfld toNrmGrp abs) ⇒ ⊢ (dist‘𝑇) = (abs ∘ − ) | ||
Theorem | cnncvsaddassdemo 25216 | Derive the associative law for complex number addition addass 11271 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | cnncvsmulassdemo 25217 | Derive the associative law for complex number multiplication mulass 11272 interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | cnncvsabsnegdemo 25218 | Derive the absolute value of a negative complex number absneg 15326 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
Syntax | ccph 25219 | Extend class notation with the class of subcomplex pre-Hilbert spaces. |
class ℂPreHil | ||
Syntax | ctcph 25220 | Function to put a norm on a pre-Hilbert space. |
class toℂPreHil | ||
Definition | df-cph 25221* | Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of ℂfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} | ||
Definition | df-tcph 25222* | Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph 25290). (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | ||
Theorem | iscph 25223* | A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) | ||
Theorem | cphphl 25224 | A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | ||
Theorem | cphnlm 25225 | A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | ||
Theorem | cphngp 25226 | A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | ||
Theorem | cphlmod 25227 | A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) | ||
Theorem | cphlvec 25228 | A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | ||
Theorem | cphnvc 25229 | A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) | ||
Theorem | cphsubrglem 25230 | Lemma for cphsubrg 25233. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) | ||
Theorem | cphreccllem 25231 | Lemma for cphreccl 25234. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) | ||
Theorem | cphsca 25232 | A subcomplex pre-Hilbert space is a vector space over a subfield of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) | ||
Theorem | cphsubrg 25233 | The scalar field of a subcomplex pre-Hilbert space is a subring of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) | ||
Theorem | cphreccl 25234 | The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝐾) | ||
Theorem | cphdivcl 25235 | The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) | ||
Theorem | cphcjcl 25236 | The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (∗‘𝐴) ∈ 𝐾) | ||
Theorem | cphsqrtcl 25237 | The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) | ||
Theorem | cphabscl 25238 | The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) ∈ 𝐾) | ||
Theorem | cphsqrtcl2 25239 | The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) | ||
Theorem | cphsqrtcl3 25240 | If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit i, then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) | ||
Theorem | cphqss 25241 | The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → ℚ ⊆ 𝐾) | ||
Theorem | cphclm 25242 | A subcomplex pre-Hilbert space is a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | ||
Theorem | cphnmvs 25243 | Norm of a scalar product. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((abs‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | cphipcl 25244 | An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ ℂ) | ||
Theorem | cphnmfval 25245* | The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) | ||
Theorem | cphnm 25246 | The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) | ||
Theorem | nmsq 25247 | The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) | ||
Theorem | cphnmf 25248 | The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁:𝑉⟶𝐾) | ||
Theorem | cphnmcl 25249 | The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) ∈ 𝐾) | ||
Theorem | reipcl 25250 | An inner product of an element with itself is real. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐴) ∈ ℝ) | ||
Theorem | ipge0 25251 | The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → 0 ≤ (𝐴 , 𝐴)) | ||
Theorem | cphipcj 25252 | Conjugate of an inner product in a subcomplex pre-Hilbert space. Complex version of ipcj 21675. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∗‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
Theorem | cphipipcj 25253 | An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (Revised by AV, 19-Oct-2021.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) · (𝐵 , 𝐴)) = ((abs‘(𝐴 , 𝐵))↑2)) | ||
Theorem | cphorthcom 25254 | Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom 21676. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) | ||
Theorem | cphip0l 25255 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. Complex version of ip0l 21677. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 0) | ||
Theorem | cphip0r 25256 | Inner product with a zero second argument. Complex version of ip0r 21678. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 0 ) = 0) | ||
Theorem | cphipeq0 25257 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. Complex version of ipeq0 21679. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 0 ↔ 𝐴 = 0 )) | ||
Theorem | cphdir 25258 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. Complex version of ipdir 21680. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) + (𝐵 , 𝐶))) | ||
Theorem | cphdi 25259 | Distributive law for inner product (left-distributivity). Complex version of ipdi 21681. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) + (𝐴 , 𝐶))) | ||
Theorem | cph2di 25260 | Distributive law for inner product. Complex version of ip2di 21682. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
Theorem | cphsubdir 25261 | Distributive law for inner product subtraction. Complex version of ipsubdir 21683. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶) − (𝐵 , 𝐶))) | ||
Theorem | cphsubdi 25262 | Distributive law for inner product subtraction. Complex version of ipsubdi 21684. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵) − (𝐴 , 𝐶))) | ||
Theorem | cph2subdi 25263 | Distributive law for inner product subtraction. Complex version of ip2subdi 21685. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
Theorem | cphass 25264 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. See ipass 21686, his5 31118. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 · (𝐵 , 𝐶))) | ||
Theorem | cphassr 25265 | "Associative" law for second argument of inner product (compare cphass 25264). See ipassr 21687, his52 . (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶))) | ||
Theorem | cph2ass 25266 | Move scalar multiplication to outside of inner product. See his35 31120. (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷))) | ||
Theorem | cphassi 25267 | Associative law for the first argument of an inner product with scalar _𝑖. (Contributed by AV, 17-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴))) | ||
Theorem | cphassir 25268 | "Associative" law for the second argument of an inner product with scalar _𝑖. (Contributed by AV, 17-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵))) | ||
Theorem | cphpyth 25269 | The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) | ||
Theorem | tcphex 25270* | Lemma for tcphbas 25272 and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V | ||
Theorem | tcphval 25271* | Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) | ||
Theorem | tcphbas 25272 | The base set of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ 𝑉 = (Base‘𝐺) | ||
Theorem | tchplusg 25273 | The addition operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ + = (+g‘𝐺) | ||
Theorem | tcphsub 25274 | The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ − = (-g‘𝐺) | ||
Theorem | tcphmulr 25275 | The ring operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ · = (.r‘𝑊) ⇒ ⊢ · = (.r‘𝐺) | ||
Theorem | tcphsca 25276 | The scalar field of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ 𝐹 = (Scalar‘𝐺) | ||
Theorem | tcphvsca 25277 | The scalar multiplication of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ · = ( ·𝑠 ‘𝐺) | ||
Theorem | tcphip 25278 | The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ · = (·𝑖‘𝑊) ⇒ ⊢ · = (·𝑖‘𝐺) | ||
Theorem | tcphtopn 25279 | The topology of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝑊 ∈ 𝑉 → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | tcphphl 25280 | Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) | ||
Theorem | tchnmfval 25281* | The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) | ||
Theorem | tcphnmval 25282 | The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) = (√‘(𝑋 , 𝑋))) | ||
Theorem | cphtcphnm 25283 | The norm of a norm-augmented subcomplex pre-Hilbert space is the same as the original norm on it. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘𝐺)) | ||
Theorem | tcphds 25284 | The distance of a pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ − = (-g‘𝑊) ⇒ ⊢ (𝑊 ∈ Grp → (𝑁 ∘ − ) = (dist‘𝐺)) | ||
Theorem | phclm 25285 | A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℂMod) | ||
Theorem | tcphcphlem3 25286 | Lemma for tcphcph 25290: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) | ||
Theorem | ipcau2 25287* | The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space built from a pre-Hilbert space with certain properties. The main theorem is ipcau 25291. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | tcphcphlem1 25288* | Lemma for tcphcph 25290: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (√‘((𝑋 − 𝑌) , (𝑋 − 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))) | ||
Theorem | tcphcphlem2 25289* | Lemma for tcphcph 25290: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) | ||
Theorem | tcphcph 25290* | The standard definition of a norm turns any pre-Hilbert space over a subfield of ℂfld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℂPreHil) | ||
Theorem | ipcau 25291 | The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | nmparlem 25292 | Lemma for nmpar 25293. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | nmpar 25293 | A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | cphipval2 25294 | Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)))) / 4)) | ||
Theorem | 4cphipval2 25295 | Four times the inner product value cphipval2 25294. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2))))) | ||
Theorem | cphipval 25296* | Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4)) | ||
Theorem | ipcnlem2 25297 | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝐴𝐷𝑋) < 𝑈) & ⊢ (𝜑 → (𝐵𝐷𝑌) < 𝑇) ⇒ ⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅) | ||
Theorem | ipcnlem1 25298* | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) | ||
Theorem | ipcn 25299 | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ , = (·if‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | cnmpt1ip 25300* | Continuity of inner product; analogue of cnmpt12f 23695 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐶 = (TopOpen‘ℂfld) & ⊢ , = (·𝑖‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 , 𝐵)) ∈ (𝐾 Cn 𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |