HomeHome Metamath Proof Explorer
Theorem List (p. 253 of 481)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30595)
  Hilbert Space Explorer  Hilbert Space Explorer
(30596-32118)
  Users' Mathboxes  Users' Mathboxes
(32119-48006)
 

Theorem List for Metamath Proof Explorer - 25201-25300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhlbn 25201 Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.)
(𝑊 ∈ ℂHil → 𝑊 ∈ Ban)
 
Theoremhlcph 25202 Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.)
(𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
 
Theoremhlphl 25203 Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
(𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
 
Theoremhlcms 25204 Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015.)
(𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp)
 
Theoremhlprlem 25205 Lemma for hlpr 25207. (Contributed by Mario Carneiro, 15-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂHil → (𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing ∧ (ℂflds 𝐾) ∈ CMetSp))
 
Theoremhlress 25206 The scalar field of a subcomplex Hilbert space contains . (Contributed by Mario Carneiro, 8-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂHil → ℝ ⊆ 𝐾)
 
Theoremhlpr 25207 The scalar field of a subcomplex Hilbert space is either or . (Contributed by Mario Carneiro, 15-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂHil → 𝐾 ∈ {ℝ, ℂ})
 
Theoremishl2 25208 A Hilbert space is a complete subcomplex pre-Hilbert space over or . (Contributed by Mario Carneiro, 15-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))
 
Theoremcphssphl 25209 A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008.) (Revised by AV, 25-Sep-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆𝑋 ∈ Ban) → 𝑋 ∈ ℂHil)
 
Theoremcmslssbn 25210 A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn 25174. (Contributed by AV, 8-Oct-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (LSubSp‘𝑊)       (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
 
Theoremcmscsscms 25211 A closed subspace of a complete metric space which is also a subcomplex pre-Hilbert space is a complete metric space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized to arbitrary topological spaces (or at least topological modules), this assumption could be omitted. (Contributed by AV, 8-Oct-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (ClSubSp‘𝑊)       (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)
 
Theorembncssbn 25212 A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (ClSubSp‘𝑊)       (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ Ban)
 
Theoremcssbn 25213 A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition C (df-ch 30898) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 25210. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (LSubSp‘𝑊)    &   𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))       (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)
 
Theoremcsschl 25214 A complete subspace of a complex pre-Hilbert space is a complex Hilbert space. Remarks: (a) In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition C (df-ch 30898) of closed subspaces of a Hilbert space. (b) This theorem does not hold for arbitrary subcomplex (pre-)Hilbert spaces, because the scalar field as restriction of the field of the complex numbers need not be closed. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (LSubSp‘𝑊)    &   𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))    &   (Scalar‘𝑊) = ℂfld       ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (𝑋 ∈ ℂHil ∧ (Scalar‘𝑋) = ℂfld))
 
Theoremcmslsschl 25215 A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)
 
Theoremchlcsschl 25216 A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 8-Oct-2022.)
𝑋 = (𝑊s 𝑈)    &   𝑆 = (ClSubSp‘𝑊)       ((𝑊 ∈ ℂHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)
 
12.5.7.1  The complete ordered field of the real numbers
 
Theoremretopn 25217 The topology of the real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.)
(topGen‘ran (,)) = (TopOpen‘ℝfld)
 
Theoremrecms 25218 The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017.)
fld ∈ CMetSp
 
Theoremreust 25219 The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.)
(UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
 
Theoremrecusp 25220 The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.)
fld ∈ CUnifSp
 
12.5.8  Euclidean spaces
 
Syntaxcrrx 25221 Extend class notation with generalized real Euclidean spaces.
class ℝ^
 
Syntaxcehl 25222 Extend class notation with real Euclidean spaces.
class 𝔼hil
 
Definitiondf-rrx 25223 Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.)
ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))
 
Definitiondf-ehl 25224 Define a function generating the real Euclidean spaces of finite dimension. The case 𝑛 = 0 corresponds to a space of dimension 0, that is, limited to a neutral element (see ehl0 25255). Members of this family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛)))
 
Theoremrrxval 25225 Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐻 = (ℝ^‘𝐼)       (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
 
Theoremrrxbase 25226* The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)       (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0})
 
Theoremrrxprds 25227 Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)       (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
 
Theoremrrxip 25228* The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)       (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
 
Theoremrrxnm 25229* The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)       (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
 
Theoremrrxcph 25230 Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)       (𝐼𝑉𝐻 ∈ ℂPreHil)
 
Theoremrrxds 25231* The distance over generalized Euclidean spaces. Compare with df-rrn 37150. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)       (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
 
Theoremrrxvsca 25232 The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)    &    = ( ·𝑠𝐻)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝐼)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑋 ∈ (Base‘𝐻))       (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
 
Theoremrrxplusgvscavalb 25233* The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (Base‘𝐻)    &    = ( ·𝑠𝐻)    &   (𝜑𝐼𝑉)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &    = (+g𝐻)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
 
Theoremrrxsca 25234 The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023.)
𝐻 = (ℝ^‘𝐼)       (𝐼𝑉 → (Scalar‘𝐻) = ℝfld)
 
Theoremrrx0 25235 The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.)
𝐻 = (ℝ^‘𝐼)    &    0 = (𝐼 × {0})       (𝐼𝑉 → (0g𝐻) = 0 )
 
Theoremrrx0el 25236 The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.)
0 = (𝐼 × {0})    &   𝑃 = (ℝ ↑m 𝐼)       (𝐼𝑉0𝑃)
 
Theoremcsbren 25237* Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)       (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
 
Theoremtrirn 25238* Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)       (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
 
Theoremrrxf 25239* Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   (𝜑𝐹𝑋)       (𝜑𝐹:𝐼⟶ℝ)
 
Theoremrrxfsupp 25240* Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   (𝜑𝐹𝑋)       (𝜑 → (𝐹 supp 0) ∈ Fin)
 
Theoremrrxsuppss 25241* Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   (𝜑𝐹𝑋)       (𝜑 → (𝐹 supp 0) ⊆ 𝐼)
 
Theoremrrxmvallem 25242* Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}       ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
 
Theoremrrxmval 25243* The value of the Euclidean metric. Compare with rrnmval 37152. (Contributed by Thierry Arnoux, 30-Jun-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   𝐷 = (dist‘(ℝ^‘𝐼))       ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
 
Theoremrrxmfval 25244* The value of the Euclidean metric. Compare with rrnval 37151. (Contributed by Thierry Arnoux, 30-Jun-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   𝐷 = (dist‘(ℝ^‘𝐼))       (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓𝑘) − (𝑔𝑘))↑2))))
 
Theoremrrxmetlem 25245* Lemma for rrxmet 25246. (Contributed by Thierry Arnoux, 5-Jul-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   𝐷 = (dist‘(ℝ^‘𝐼))    &   (𝜑𝐼𝑉)    &   (𝜑𝐹𝑋)    &   (𝜑𝐺𝑋)    &   (𝜑𝐴𝐼)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)       (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
 
Theoremrrxmet 25246* Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   𝐷 = (dist‘(ℝ^‘𝐼))       (𝐼𝑉𝐷 ∈ (Met‘𝑋))
 
Theoremrrxdstprj1 25247* The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.)
𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}    &   𝐷 = (dist‘(ℝ^‘𝐼))    &   𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))       (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
 
Theoremrrxbasefi 25248 The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝐻 = (ℝ^‘𝑋)    &   𝐵 = (Base‘𝐻)       (𝜑𝐵 = (ℝ ↑m 𝑋))
 
Theoremrrxdsfi 25249* The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (ℝ ↑m 𝐼)       (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
 
Theoremrrxmetfi 25250 Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (dist‘(ℝ^‘𝐼))       (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
 
Theoremrrxdsfival 25251* The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
𝑋 = (ℝ ↑m 𝐼)    &   𝐷 = (dist‘(ℝ^‘𝐼))       ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
 
Theoremehlval 25252 Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐸 = (𝔼hil𝑁)       (𝑁 ∈ ℕ0𝐸 = (ℝ^‘(1...𝑁)))
 
Theoremehlbase 25253 The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐸 = (𝔼hil𝑁)       (𝑁 ∈ ℕ0 → (ℝ ↑m (1...𝑁)) = (Base‘𝐸))
 
Theoremehl0base 25254 The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023.)
𝐸 = (𝔼hil‘0)       (Base‘𝐸) = {∅}
 
Theoremehl0 25255 The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023.)
𝐸 = (𝔼hil‘0)    &    0 = (0g𝐸)       (Base‘𝐸) = { 0 }
 
Theoremehleudis 25256* The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
𝐼 = (1...𝑁)    &   𝐸 = (𝔼hil𝑁)    &   𝑋 = (ℝ ↑m 𝐼)    &   𝐷 = (dist‘𝐸)       (𝑁 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
 
Theoremehleudisval 25257* The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.)
𝐼 = (1...𝑁)    &   𝐸 = (𝔼hil𝑁)    &   𝑋 = (ℝ ↑m 𝐼)    &   𝐷 = (dist‘𝐸)       ((𝑁 ∈ ℕ0𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
 
Theoremehl1eudis 25258* The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
𝐸 = (𝔼hil‘1)    &   𝑋 = (ℝ ↑m {1})    &   𝐷 = (dist‘𝐸)       𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
 
Theoremehl1eudisval 25259 The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
𝐸 = (𝔼hil‘1)    &   𝑋 = (ℝ ↑m {1})    &   𝐷 = (dist‘𝐸)       ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (abs‘((𝐹‘1) − (𝐺‘1))))
 
Theoremehl2eudis 25260* The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
𝐸 = (𝔼hil‘2)    &   𝑋 = (ℝ ↑m {1, 2})    &   𝐷 = (dist‘𝐸)       𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
 
Theoremehl2eudisval 25261 The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
𝐸 = (𝔼hil‘2)    &   𝑋 = (ℝ ↑m {1, 2})    &   𝐷 = (dist‘𝐸)       ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
 
12.5.9  Minimizing Vector Theorem
 
Theoremminveclem1 25262* Lemma for minvec 25274. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))       (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
 
Theoremminveclem4c 25263* Lemma for minvec 25274. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )       (𝜑𝑆 ∈ ℝ)
 
Theoremminveclem2 25264* Lemma for minvec 25274. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑𝐾𝑌)    &   (𝜑𝐿𝑌)    &   (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))    &   (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))       (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
 
Theoremminveclem3a 25265* Lemma for minvec 25274. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))       (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
 
Theoremminveclem3b 25266* Lemma for minvec 25274. The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))    &   𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})       (𝜑𝐹 ∈ (fBas‘𝑌))
 
Theoremminveclem3 25267* Lemma for minvec 25274. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))    &   𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})       (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
 
Theoremminveclem4a 25268* Lemma for minvec 25274. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))    &   𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})    &   𝑃 = (𝐽 fLim (𝑋filGen𝐹))       (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
 
Theoremminveclem4b 25269* Lemma for minvec 25274. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))    &   𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})    &   𝑃 = (𝐽 fLim (𝑋filGen𝐹))       (𝜑𝑃𝑋)
 
Theoremminveclem4 25270* Lemma for minvec 25274. The convergent point of the Cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))    &   𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})    &   𝑃 = (𝐽 fLim (𝑋filGen𝐹))    &   𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))       (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
 
Theoremminveclem5 25271* Lemma for minvec 25274. Discharge the assumptions in minveclem4 25270. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))       (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
 
Theoremminveclem6 25272* Lemma for minvec 25274. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))       ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
 
Theoremminveclem7 25273* Lemma for minvec 25274. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)    &   𝐽 = (TopOpen‘𝑈)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))       (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
 
Theoremminvec 25274* Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.)
𝑋 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (norm‘𝑈)    &   (𝜑𝑈 ∈ ℂPreHil)    &   (𝜑𝑌 ∈ (LSubSp‘𝑈))    &   (𝜑 → (𝑈s 𝑌) ∈ CMetSp)    &   (𝜑𝐴𝑋)       (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
 
12.5.10  Projection Theorem
 
Theorempjthlem1 25275* Lemma for pjth 25277. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &    , = (·𝑖𝑊)    &   𝐿 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ ℂHil)    &   (𝜑𝑈𝐿)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑈)    &   (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))    &   𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))       (𝜑 → (𝐴 , 𝐵) = 0)
 
Theorempjthlem2 25276 Lemma for pjth 25277. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &    , = (·𝑖𝑊)    &   𝐿 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ ℂHil)    &   (𝜑𝑈𝐿)    &   (𝜑𝐴𝑉)    &   𝐽 = (TopOpen‘𝑊)    &    = (LSSum‘𝑊)    &   𝑂 = (ocv‘𝑊)    &   (𝜑𝑈 ∈ (Clsd‘𝐽))       (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))
 
Theorempjth 25277 Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.)
𝑉 = (Base‘𝑊)    &    = (LSSum‘𝑊)    &   𝑂 = (ocv‘𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝐿 = (LSubSp‘𝑊)       ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)
 
Theorempjth2 25278 Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015.)
𝐽 = (TopOpen‘𝑊)    &   𝐿 = (LSubSp‘𝑊)    &   𝐾 = (proj‘𝑊)       ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ dom 𝐾)
 
Theoremcldcss 25279 Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.)
𝑉 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝐿 = (LSubSp‘𝑊)    &   𝐶 = (ClSubSp‘𝑊)       (𝑊 ∈ ℂHil → (𝑈𝐶 ↔ (𝑈𝐿𝑈 ∈ (Clsd‘𝐽))))
 
Theoremcldcss2 25280 Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.)
𝑉 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝐿 = (LSubSp‘𝑊)    &   𝐶 = (ClSubSp‘𝑊)       (𝑊 ∈ ℂHil → 𝐶 = (𝐿 ∩ (Clsd‘𝐽)))
 
Theoremhlhil 25281 Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015.)
(𝑊 ∈ ℂHil → 𝑊 ∈ Hil)
 
PART 13  BASIC REAL AND COMPLEX ANALYSIS
 
13.1  Continuity
 
Theoremaddcncf 25282* The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋cn→ℂ))
 
Theoremsubcncf 25283* The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴𝐵)) ∈ (𝑋cn→ℂ))
 
Theoremmulcncf 25284* The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) Avoid ax-mulf 11185. (Revised by GG, 16-Mar-2025.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
 
TheoremmulcncfOLD 25285* Obsolete version of mulcncf 25284 as of 9-Apr-2025. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
 
Theoremdivcncf 25286* The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→(ℂ ∖ {0})))       (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
 
13.1.1  Intermediate value theorem
 
Theorempmltpclem1 25287* Lemma for pmltpc 25289. (Contributed by Mario Carneiro, 1-Jul-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < 𝐶)    &   (𝜑 → (((𝐹𝐴) < (𝐹𝐵) ∧ (𝐹𝐶) < (𝐹𝐵)) ∨ ((𝐹𝐵) < (𝐹𝐴) ∧ (𝐹𝐵) < (𝐹𝐶))))       (𝜑 → ∃𝑎𝑆𝑏𝑆𝑐𝑆 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
 
Theorempmltpclem2 25288* Lemma for pmltpc 25289. (Contributed by Mario Carneiro, 1-Jul-2014.)
(𝜑𝐹 ∈ (ℝ ↑pm ℝ))    &   (𝜑𝐴 ⊆ dom 𝐹)    &   (𝜑𝑈𝐴)    &   (𝜑𝑉𝐴)    &   (𝜑𝑊𝐴)    &   (𝜑𝑋𝐴)    &   (𝜑𝑈𝑉)    &   (𝜑𝑊𝑋)    &   (𝜑 → ¬ (𝐹𝑈) ≤ (𝐹𝑉))    &   (𝜑 → ¬ (𝐹𝑋) ≤ (𝐹𝑊))       (𝜑 → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
 
Theorempmltpc 25289* Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.)
((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
 
Theoremivthlem1 25290* Lemma for ivth 25293. The set 𝑆 of all 𝑥 values with (𝐹𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}       (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
 
Theoremivthlem2 25291* Lemma for ivth 25293. Show that the supremum of 𝑆 cannot be less than 𝑈. If it was, continuity of 𝐹 implies that there are points just above the supremum that are also less than 𝑈, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}    &   𝐶 = sup(𝑆, ℝ, < )       (𝜑 → ¬ (𝐹𝐶) < 𝑈)
 
Theoremivthlem3 25292* Lemma for ivth 25293, the intermediate value theorem. Show that (𝐹𝐶) cannot be greater than 𝑈, and so establish the existence of a root of the function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 17-Jun-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}    &   𝐶 = sup(𝑆, ℝ, < )       (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ∧ (𝐹𝐶) = 𝑈))
 
Theoremivth 25293* The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))       (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
 
Theoremivth2 25294* The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))       (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
 
Theoremivthle 25295* The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) ≤ 𝑈𝑈 ≤ (𝐹𝐵)))       (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
 
Theoremivthle2 25296* The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐵) ≤ 𝑈𝑈 ≤ (𝐹𝐴)))       (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹𝑐) = 𝑈)
 
Theoremivthicc 25297* The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑀 ∈ (𝐴[,]𝐵))    &   (𝜑𝑁 ∈ (𝐴[,]𝐵))    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)       (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
 
Theoremevthicc 25298* Specialization of the Extreme Value Theorem to a closed interval of . (Contributed by Mario Carneiro, 12-Aug-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))       (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑤)))
 
Theoremevthicc2 25299* Combine ivthicc 25297 with evthicc 25298 to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))       (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
 
Theoremcniccbdd 25300* A continuous function on a closed interval is bounded. (Contributed by Mario Carneiro, 7-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48006
  Copyright terms: Public domain < Previous  Next >