![]() |
Metamath
Proof Explorer Theorem List (p. 253 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | itgcnval 25201* | Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) | ||
Theorem | itgre 25202* | Real part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (ℜ‘∫𝐴𝐵 d𝑥) = ∫𝐴(ℜ‘𝐵) d𝑥) | ||
Theorem | itgim 25203* | Imaginary part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (ℑ‘∫𝐴𝐵 d𝑥) = ∫𝐴(ℑ‘𝐵) d𝑥) | ||
Theorem | iblneg 25204* | The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ 𝐿1) | ||
Theorem | itgneg 25205* | Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥) | ||
Theorem | iblss 25206* | A subset of an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | iblss2 25207* | Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | itgitg2 25208* | Transfer an integral using ∫2 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) & ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴))) | ||
Theorem | i1fibl 25209 | A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1) | ||
Theorem | itgitg1 25210* | Transfer an integral using ∫1 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹‘𝑥) d𝑥 = (∫1‘𝐹)) | ||
Theorem | itgle 25211* | Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥) | ||
Theorem | itgge0 25212* | The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∫𝐴𝐵 d𝑥) | ||
Theorem | itgss 25213* | Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
Theorem | itgss2 25214* | Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝐴 ⊆ 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) | ||
Theorem | itgeqa 25215* | Approximate equality of integrals. If 𝐶(𝑥) = 𝐷(𝑥) for almost all 𝑥, then ∫𝐵𝐶(𝑥) d𝑥 = ∫𝐵𝐷(𝑥) d𝑥 and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)) | ||
Theorem | itgss3 25216* | Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘(𝐵 ∖ 𝐴)) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)) | ||
Theorem | itgioo 25217* | Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) | ||
Theorem | itgless 25218* | Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) | ||
Theorem | iblconst 25219 | A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1) | ||
Theorem | itgconst 25220* | Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴))) | ||
Theorem | ibladdlem 25221* | Lemma for ibladd 25222. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 = (𝐵 + 𝐶)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ) & ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ) | ||
Theorem | ibladd 25222* | Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1) | ||
Theorem | iblsub 25223* | Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝐿1) | ||
Theorem | itgaddlem1 25224* | Lemma for itgadd 25226. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
Theorem | itgaddlem2 25225* | Lemma for itgadd 25226. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
Theorem | itgadd 25226* | Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
Theorem | itgsub 25227* | Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 − 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥)) | ||
Theorem | itgfsum 25228* | Take a finite sum of integrals over the same domain. (Contributed by Mario Carneiro, 24-Aug-2014.) |
⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) | ||
Theorem | iblabslem 25229* | Lemma for iblabs 25230. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐺 ∈ MblFn ∧ (∫2‘𝐺) ∈ ℝ)) | ||
Theorem | iblabs 25230* | The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1) | ||
Theorem | iblabsr 25231* | A measurable function is integrable iff its absolute value is integrable. (See iblabs 25230 for the forward implication.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | ||
Theorem | iblmulc2 25232* | Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1) | ||
Theorem | itgmulc2lem1 25233* | Lemma for itgmulc2 25235: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
Theorem | itgmulc2lem2 25234* | Lemma for itgmulc2 25235: real case. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
Theorem | itgmulc2 25235* | Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
Theorem | itgabs 25236* | The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) | ||
Theorem | itgsplit 25237* | The ∫ integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝑈𝐶 d𝑥 = (∫𝐴𝐶 d𝑥 + ∫𝐵𝐶 d𝑥)) | ||
Theorem | itgspliticc 25238* | The ∫ integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) | ||
Theorem | itgsplitioo 25239* | The ∫ integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)) | ||
Theorem | bddmulibl 25240* | A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → (𝐹 ∘f · 𝐺) ∈ 𝐿1) | ||
Theorem | bddibl 25241* | A bounded function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1) | ||
Theorem | cniccibl 25242 | A continuous function on a closed bounded interval is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ 𝐿1) | ||
Theorem | bddiblnc 25243* | Choice-free proof of bddibl 25241. (Contributed by Brendan Leahy, 2-Nov-2017.) (Revised by Brendan Leahy, 6-Nov-2017.) |
⊢ ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1) | ||
Theorem | cnicciblnc 25244 | Choice-free proof of cniccibl 25242. (Contributed by Brendan Leahy, 2-Nov-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ 𝐿1) | ||
Theorem | itggt0 25245* | The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
⊢ (𝜑 → 0 < (vol‘𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) | ||
Theorem | itgcn 25246* | Transfer itg2cn 25165 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((𝑢 ⊆ 𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)) | ||
Syntax | cdit 25247 | Extend class notation with the directed integral. |
class ⨜[𝐴 → 𝐵]𝐶 d𝑥 | ||
Definition | df-ditg 25248 | Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The 𝐴 and 𝐵 here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +∞, -∞ for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | ||
Theorem | ditgeq1 25249* | Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) | ||
Theorem | ditgeq2 25250* | Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝐴 = 𝐵 → ⨜[𝐶 → 𝐴]𝐷 d𝑥 = ⨜[𝐶 → 𝐵]𝐷 d𝑥) | ||
Theorem | ditgeq3 25251* | Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos 25257 first and use the equality theorems for df-itg 25024.) (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) | ||
Theorem | ditgeq3dv 25252* | Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) | ||
Theorem | ditgex 25253 | A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V | ||
Theorem | ditg0 25254* | Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ ⨜[𝐴 → 𝐴]𝐵 d𝑥 = 0 | ||
Theorem | cbvditg 25255* | Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 ⇒ ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 | ||
Theorem | cbvditgv 25256* | Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 | ||
Theorem | ditgpos 25257* | Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) | ||
Theorem | ditgneg 25258* | Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) | ||
Theorem | ditgcl 25259* | Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) | ||
Theorem | ditgswap 25260* | Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) | ||
Theorem | ditgsplitlem 25261* | Lemma for ditgsplit 25262. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐶 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1) & ⊢ ((𝜓 ∧ 𝜃) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = (⨜[𝐴 → 𝐵]𝐷 d𝑥 + ⨜[𝐵 → 𝐶]𝐷 d𝑥)) | ||
Theorem | ditgsplit 25262* | This theorem is the raison d'être for the directed integral, because unlike itgspliticc 25238, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐶 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = (⨜[𝐴 → 𝐵]𝐷 d𝑥 + ⨜[𝐵 → 𝐶]𝐷 d𝑥)) | ||
Syntax | climc 25263 | The limit operator. |
class limℂ | ||
Syntax | cdv 25264 | The derivative operator. |
class D | ||
Syntax | cdvn 25265 | The 𝑛-th derivative operator. |
class D𝑛 | ||
Syntax | ccpn 25266 | The set of 𝑛-times continuously differentiable functions. |
class 𝓑C𝑛 | ||
Definition | df-limc 25267* | Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ limℂ = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣ [(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) | ||
Definition | df-dv 25268* | Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of ℂ and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = ℂ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) |
⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | ||
Definition | df-dvn 25269* | Define the 𝑛-th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓}))) | ||
Definition | df-cpn 25270* | Define the set of 𝑛-times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
⊢ 𝓑C𝑛 = (𝑠 ∈ 𝒫 ℂ ↦ (𝑥 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑥) ∈ (dom 𝑓–cn→ℂ)})) | ||
Theorem | reldv 25271 | The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.) |
⊢ Rel (𝑆 D 𝐹) | ||
Theorem | limcvallem 25272* | Lemma for ellimc 25274. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) ⇒ ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) | ||
Theorem | limcfval 25273* | Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) | ||
Theorem | ellimc 25274* | Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) | ||
Theorem | limcrcl 25275 | Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) | ||
Theorem | limccl 25276 | Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝐹 limℂ 𝐵) ⊆ ℂ | ||
Theorem | limcdif 25277 | It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) | ||
Theorem | ellimc2 25278* | Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝐶 ∈ 𝑢 → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))) | ||
Theorem | limcnlp 25279 | If 𝐵 is not a limit point of the domain of the function 𝐹, then every point is a limit of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) | ||
Theorem | ellimc3 25280* | Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) | ||
Theorem | limcflflem 25281 | Lemma for limcflf 25282. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐶 = (𝐴 ∖ {𝐵}) & ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ⇒ ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) | ||
Theorem | limcflf 25282 | The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐵 restricted to 𝐴 ∖ {𝐵}, to the topology of the complex numbers. (If 𝐵 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐶 = (𝐴 ∖ {𝐵}) & ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹 ↾ 𝐶))) | ||
Theorem | limcmo 25283* | If 𝐵 is a limit point of the domain of the function 𝐹, then there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | limcmpt 25284* | Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ) & ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) | ||
Theorem | limcmpt2 25285* | Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) | ||
Theorem | limcresi 25286 | Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝐹 limℂ 𝐵) ⊆ ((𝐹 ↾ 𝐶) limℂ 𝐵) | ||
Theorem | limcres 25287 | If 𝐵 is an interior point of 𝐶 ∪ {𝐵} relative to the domain 𝐴, then a limit point of 𝐹 ↾ 𝐶 extends to a limit of 𝐹. (Contributed by Mario Carneiro, 27-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) & ⊢ (𝜑 → 𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵}))) ⇒ ⊢ (𝜑 → ((𝐹 ↾ 𝐶) limℂ 𝐵) = (𝐹 limℂ 𝐵)) | ||
Theorem | cnplimc 25288 | A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐽 = (𝐾 ↾t 𝐴) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) | ||
Theorem | cnlimc 25289* | 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | ||
Theorem | cnlimci 25290 | If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | cnmptlimc 25291* | If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) | ||
Theorem | limccnp 25292 | If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐽 = (𝐾 ↾t 𝐷) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝐺 ∘ 𝐹) limℂ 𝐵)) | ||
Theorem | limccnp2 25293* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑌 ⊆ ℂ) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) ⇒ ⊢ (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥 ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limℂ 𝐵)) | ||
Theorem | limcco 25294* | Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) | ||
Theorem | limciun 25295* | A point is a limit of 𝐹 on the finite union ∪ 𝑥 ∈ 𝐴𝐵(𝑥) iff it is the limit of the restriction of 𝐹 to each 𝐵(𝑥). (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐶) = (ℂ ∩ ∩ 𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐵) limℂ 𝐶))) | ||
Theorem | limcun 25296 | A point is a limit of 𝐹 on 𝐴 ∪ 𝐵 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐵. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:(𝐴 ∪ 𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐶) = (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶))) | ||
Theorem | dvlem 25297 | Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) | ||
Theorem | dvfval 25298* | Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) | ||
Theorem | eldv 25299* | The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) | ||
Theorem | dvcl 25300 | The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |