HomeHome Metamath Proof Explorer
Theorem List (p. 253 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 25201-25300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdvfsumlem3 25201* Lemma for dvfsumrlim 25204. (Contributed by Mario Carneiro, 17-May-2016.)
𝑆 = (𝑇(,)+∞)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝑀 ≤ (𝐷 + 1))    &   (𝜑𝑇 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐵𝑉)    &   ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))    &   (𝑥 = 𝑘𝐵 = 𝐶)    &   (𝜑𝑈 ∈ ℝ*)    &   ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)    &   𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)    &   (𝜑𝐷𝑋)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝑈)       (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
 
Theoremdvfsumlem4 25202* Lemma for dvfsumrlim 25204. (Contributed by Mario Carneiro, 18-May-2016.)
𝑆 = (𝑇(,)+∞)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝑀 ≤ (𝐷 + 1))    &   (𝜑𝑇 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐵𝑉)    &   ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))    &   (𝑥 = 𝑘𝐵 = 𝐶)    &   (𝜑𝑈 ∈ ℝ*)    &   ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)    &   𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))    &   ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵)    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)    &   (𝜑𝐷𝑋)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝑈)       (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
 
Theoremdvfsumrlimge0 25203* Lemma for dvfsumrlim 25204. Satisfy the assumption of dvfsumlem4 25202. (Contributed by Mario Carneiro, 18-May-2016.)
𝑆 = (𝑇(,)+∞)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝑀 ≤ (𝐷 + 1))    &   (𝜑𝑇 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐵𝑉)    &   ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))    &   (𝑥 = 𝑘𝐵 = 𝐶)    &   ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)    &   𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))    &   (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)       ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
 
Theoremdvfsumrlim 25204* Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
𝑆 = (𝑇(,)+∞)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝑀 ≤ (𝐷 + 1))    &   (𝜑𝑇 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐵𝑉)    &   ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))    &   (𝑥 = 𝑘𝐵 = 𝐶)    &   ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)    &   𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))    &   (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)       (𝜑𝐺 ∈ dom ⇝𝑟 )
 
Theoremdvfsumrlim2 25205* Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 = 𝐴(𝑥) converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
𝑆 = (𝑇(,)+∞)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝑀 ≤ (𝐷 + 1))    &   (𝜑𝑇 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐵𝑉)    &   ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))    &   (𝑥 = 𝑘𝐵 = 𝐶)    &   ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)    &   𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))    &   (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)    &   (𝜑𝑋𝑆)    &   (𝜑𝐷𝑋)       ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
 
Theoremdvfsumrlim3 25206* Conjoin the statements of dvfsumrlim 25204 and dvfsumrlim2 25205. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.)
𝑆 = (𝑇(,)+∞)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝑀 ≤ (𝐷 + 1))    &   (𝜑𝑇 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐵𝑉)    &   ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))    &   (𝑥 = 𝑘𝐵 = 𝐶)    &   ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)    &   𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))    &   (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)    &   (𝑥 = 𝑋𝐵 = 𝐸)       (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
 
Theoremdvfsum2 25207* The reverse of dvfsumrlim 25204, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.)
𝑆 = (𝑇(,)+∞)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ*)    &   (𝜑𝑀 ≤ (𝐷 + 1))    &   (𝜑𝑇 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥𝑆) → 𝐵𝑉)    &   ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))    &   (𝑥 = 𝑘𝐵 = 𝐶)    &   ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)    &   𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))    &   ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)    &   (𝜑𝐷𝑋)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝑈)    &   (𝑥 = 𝑌𝐵 = 𝐸)       (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
 
Theoremftc1lem1 25208* Lemma for ftc1a 25210 and ftc1 25215. (Contributed by Mario Carneiro, 31-Aug-2014.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)    &   (𝜑𝑋 ∈ (𝐴[,]𝐵))    &   (𝜑𝑌 ∈ (𝐴[,]𝐵))       ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
 
Theoremftc1lem2 25209* Lemma for ftc1 25215. (Contributed by Mario Carneiro, 12-Aug-2014.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)       (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
 
Theoremftc1a 25210* The Fundamental Theorem of Calculus, part one. The function 𝐺 formed by varying the right endpoint of an integral of 𝐹 is continuous if 𝐹 is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)       (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
 
Theoremftc1lem3 25211* Lemma for ftc1 25215. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 8-Sep-2015.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))    &   (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))    &   𝐽 = (𝐿t ℝ)    &   𝐾 = (𝐿t 𝐷)    &   𝐿 = (TopOpen‘ℂfld)       (𝜑𝐹:𝐷⟶ℂ)
 
Theoremftc1lem4 25212* Lemma for ftc1 25215. (Contributed by Mario Carneiro, 31-Aug-2014.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))    &   (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))    &   𝐽 = (𝐿t ℝ)    &   𝐾 = (𝐿t 𝐷)    &   𝐿 = (TopOpen‘ℂfld)    &   𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝑅 ∈ ℝ+)    &   ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))    &   (𝜑𝑋 ∈ (𝐴[,]𝐵))    &   (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)    &   (𝜑𝑌 ∈ (𝐴[,]𝐵))    &   (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)       ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
 
Theoremftc1lem5 25213* Lemma for ftc1 25215. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))    &   (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))    &   𝐽 = (𝐿t ℝ)    &   𝐾 = (𝐿t 𝐷)    &   𝐿 = (TopOpen‘ℂfld)    &   𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝑅 ∈ ℝ+)    &   ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))    &   (𝜑𝑋 ∈ (𝐴[,]𝐵))    &   (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)       ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
 
Theoremftc1lem6 25214* Lemma for ftc1 25215. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))    &   (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))    &   𝐽 = (𝐿t ℝ)    &   𝐾 = (𝐿t 𝐷)    &   𝐿 = (TopOpen‘ℂfld)    &   𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))       (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
 
Theoremftc1 25215* The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))    &   (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))    &   𝐽 = (𝐿t ℝ)    &   𝐾 = (𝐿t 𝐷)    &   𝐿 = (TopOpen‘ℂfld)       (𝜑𝐶(ℝ D 𝐺)(𝐹𝐶))
 
Theoremftc1cn 25216* Strengthen the assumptions of ftc1 25215 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))    &   (𝜑𝐹 ∈ 𝐿1)       (𝜑 → (ℝ D 𝐺) = 𝐹)
 
Theoremftc2 25217* The Fundamental Theorem of Calculus, part two. If 𝐹 is a function continuous on [𝐴, 𝐵] and continuously differentiable on (𝐴, 𝐵), then the integral of the derivative of 𝐹 is equal to 𝐹(𝐵) − 𝐹(𝐴). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))    &   (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)    &   (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))       (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
 
Theoremftc2ditglem 25218* Lemma for ftc2ditg 25219. (Contributed by Mario Carneiro, 3-Sep-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐴 ∈ (𝑋[,]𝑌))    &   (𝜑𝐵 ∈ (𝑋[,]𝑌))    &   (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))    &   (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)    &   (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))       ((𝜑𝐴𝐵) → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
 
Theoremftc2ditg 25219* Directed integral analogue of ftc2 25217. (Contributed by Mario Carneiro, 3-Sep-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐴 ∈ (𝑋[,]𝑌))    &   (𝜑𝐵 ∈ (𝑋[,]𝑌))    &   (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ))    &   (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)    &   (𝜑𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ))       (𝜑 → ⨜[𝐴𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
 
Theoremitgparts 25220* Integration by parts. If 𝐵(𝑥) is the derivative of 𝐴(𝑥) and 𝐷(𝑥) is the derivative of 𝐶(𝑥), and 𝐸 = (𝐴 · 𝐵)(𝑋) and 𝐹 = (𝐴 · 𝐵)(𝑌), then under suitable integrability and differentiability assumptions, the integral of 𝐴 · 𝐷 from 𝑋 to 𝑌 is equal to 𝐹𝐸 minus the integral of 𝐵 · 𝐶. (Contributed by Mario Carneiro, 3-Sep-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝑋𝑌)    &   (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ))    &   (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ))    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ))    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1)    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1)    &   (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))    &   (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷))    &   ((𝜑𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸)    &   ((𝜑𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹)       (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥))
 
Theoremitgsubstlem 25221* Lemma for itgsubst 25222. (Contributed by Mario Carneiro, 12-Sep-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝑋𝑌)    &   (𝜑𝑍 ∈ ℝ*)    &   (𝜑𝑊 ∈ ℝ*)    &   (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))    &   (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))    &   (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))    &   (𝑢 = 𝐴𝐶 = 𝐸)    &   (𝑥 = 𝑋𝐴 = 𝐾)    &   (𝑥 = 𝑌𝐴 = 𝐿)    &   (𝜑𝑀 ∈ (𝑍(,)𝑊))    &   (𝜑𝑁 ∈ (𝑍(,)𝑊))    &   ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑀(,)𝑁))       (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
 
Theoremitgsubst 25222* Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 25221, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝑋𝑌)    &   (𝜑𝑍 ∈ ℝ*)    &   (𝜑𝑊 ∈ ℝ*)    &   (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))    &   (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))    &   (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))    &   (𝑢 = 𝐴𝐶 = 𝐸)    &   (𝑥 = 𝑋𝐴 = 𝐾)    &   (𝑥 = 𝑌𝐴 = 𝐿)       (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
 
Theoremitgpowd 25223* The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
 
PART 14  BASIC REAL AND COMPLEX FUNCTIONS
 
14.1  Polynomials
 
14.1.1  Polynomial degrees
 
Syntaxcmdg 25224 Multivariate polynomial degree.
class mDeg
 
Syntaxcdg1 25225 Univariate polynomial degree.
class deg1
 
Definitiondf-mdeg 25226* Define the degree of a polynomial. Note (SO): as an experiment I am using a definition which makes the degree of the zero polynomial -∞, contrary to the convention used in df-dgr 25361. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
 
Definitiondf-deg1 25227 Define the degree of a univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.)
deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
 
Theoremreldmmdeg 25228 Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Rel dom mDeg
 
Theoremtdeglem1 25229* Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove sethood antecedent. (Revised by SN, 7-Aug-2024.)
𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       𝐻:𝐴⟶ℕ0
 
Theoremtdeglem1OLD 25230* Obsolete version of tdeglem1 25229 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       (𝐼𝑉𝐻:𝐴⟶ℕ0)
 
Theoremtdeglem3 25231* Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
 
Theoremtdeglem3OLD 25232* Obsolete version of tdeglem3 25231 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       ((𝐼𝑉𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
 
Theoremtdeglem4 25233* There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       (𝑋𝐴 → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
 
Theoremtdeglem4OLD 25234* Obsolete version of tdeglem4 25233 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
 
Theoremtdeglem2 25235 Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.)
( ∈ (ℕ0m 1o) ↦ (‘∅)) = ( ∈ (ℕ0m 1o) ↦ (ℂfld Σg ))
 
Theoremmdegfval 25236* Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
 
Theoremmdegval 25237* Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
 
Theoremmdegleb 25238* Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))       ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥𝐴 (𝐺 < (𝐻𝑥) → (𝐹𝑥) = 0 )))
 
Theoremmdeglt 25239* If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))    &   (𝜑𝐹𝐵)    &   (𝜑𝑋𝐴)    &   (𝜑 → (𝐷𝐹) < (𝐻𝑋))       (𝜑 → (𝐹𝑋) = 0 )
 
Theoremmdegldg 25240* A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}    &   𝐻 = (𝐴 ↦ (ℂfld Σg ))    &   𝑌 = (0g𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
 
Theoremmdegxrcl 25241 Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)       (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
 
Theoremmdegxrf 25242 Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)       𝐷:𝐵⟶ℝ*
 
Theoremmdegcl 25243 Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)       (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))
 
Theoremmdeg0 25244 Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &    0 = (0g𝑃)       ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)
 
Theoremmdegnn0cl 25245 Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = (𝐼 mDeg 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
 
Theoremdegltlem1 25246 Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.)
((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
 
Theoremdegltp1le 25247 Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 1-Apr-2015.)
((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < (𝑌 + 1) ↔ 𝑋𝑌))
 
Theoremmdegaddle 25248 The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (𝐼 mPoly 𝑅)    &   𝐷 = (𝐼 mDeg 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
 
Theoremmdegvscale 25249 The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (𝐼 mPoly 𝑅)    &   𝐷 = (𝐼 mDeg 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &   𝐾 = (Base‘𝑅)    &    · = ( ·𝑠𝑌)    &   (𝜑𝐹𝐾)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))
 
Theoremmdegvsca 25250 The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
𝑌 = (𝐼 mPoly 𝑅)    &   𝐷 = (𝐼 mDeg 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &   𝐸 = (RLReg‘𝑅)    &    · = ( ·𝑠𝑌)    &   (𝜑𝐹𝐸)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))
 
Theoremmdegle0 25251 A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑌 = (𝐼 mPoly 𝑅)    &   𝐷 = (𝐼 mDeg 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &   𝐴 = (algSc‘𝑌)    &   (𝜑𝐹𝐵)       (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
 
Theoremmdegmullem 25252* Lemma for mdegmulle2 25253. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (𝐼 mPoly 𝑅)    &   𝐷 = (𝐼 mDeg 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    · = (.r𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑𝐽 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐷𝐹) ≤ 𝐽)    &   (𝜑 → (𝐷𝐺) ≤ 𝐾)    &   𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}    &   𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))       (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
 
Theoremmdegmulle2 25253 The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (𝐼 mPoly 𝑅)    &   𝐷 = (𝐼 mDeg 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    · = (.r𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑𝐽 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐷𝐹) ≤ 𝐽)    &   (𝜑 → (𝐷𝐺) ≤ 𝐾)       (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
 
Theoremdeg1fval 25254 Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
𝐷 = ( deg1𝑅)       𝐷 = (1o mDeg 𝑅)
 
Theoremdeg1xrf 25255 Functionality of univariate polynomial degree, weak range. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)       𝐷:𝐵⟶ℝ*
 
Theoremdeg1xrcl 25256 Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)       (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
 
Theoremdeg1cl 25257 Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)       (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))
 
Theoremmdegpropd 25258* Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝐵 = (Base‘𝑆))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))       (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆))
 
Theoremdeg1fvi 25259 Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015.)
( deg1𝑅) = ( deg1 ‘( I ‘𝑅))
 
Theoremdeg1propd 25260* Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝐵 = (Base‘𝑆))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))       (𝜑 → ( deg1𝑅) = ( deg1𝑆))
 
Theoremdeg1z 25261 Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)       (𝑅 ∈ Ring → (𝐷0 ) = -∞)
 
Theoremdeg1nn0cl 25262 Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
 
Theoremdeg1n0ima 25263 Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)       (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0)
 
Theoremdeg1nn0clb 25264 A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
 
Theoremdeg1lt0 25265 A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ((𝐷𝐹) < 0 ↔ 𝐹 = 0 ))
 
Theoremdeg1ldg 25266 A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)    &   𝑌 = (0g𝑅)    &   𝐴 = (coe1𝐹)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
 
Theoremdeg1ldgn 25267 An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)    &   𝑌 = (0g𝑅)    &   𝐴 = (coe1𝐹)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑𝑋 ∈ ℕ0)    &   (𝜑 → (𝐴𝑋) = 𝑌)       (𝜑 → (𝐷𝐹) ≠ 𝑋)
 
Theoremdeg1ldgdomn 25268 A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐵 = (Base‘𝑃)    &   𝐸 = (RLReg‘𝑅)    &   𝐴 = (coe1𝐹)       ((𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ∈ 𝐸)
 
Theoremdeg1leb 25269* Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = (coe1𝐹)       ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
 
Theoremdeg1val 25270 Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = (coe1𝐹)       (𝐹𝐵 → (𝐷𝐹) = sup((𝐴 supp 0 ), ℝ*, < ))
 
Theoremdeg1lt 25271 If the degree of a univariate polynomial is less than some index, then that coefficient must be zero. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = (coe1𝐹)       ((𝐹𝐵𝐺 ∈ ℕ0 ∧ (𝐷𝐹) < 𝐺) → (𝐴𝐺) = 0 )
 
Theoremdeg1ge 25272 Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   𝐴 = (coe1𝐹)       ((𝐹𝐵𝐺 ∈ ℕ0 ∧ (𝐴𝐺) ≠ 0 ) → 𝐺 ≤ (𝐷𝐹))
 
Theoremcoe1mul3 25273 The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑌 = (Poly1𝑅)    &    = (.r𝑌)    &    · = (.r𝑅)    &   𝐵 = (Base‘𝑌)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑𝐼 ∈ ℕ0)    &   (𝜑 → (𝐷𝐹) ≤ 𝐼)    &   (𝜑𝐺𝐵)    &   (𝜑𝐽 ∈ ℕ0)    &   (𝜑 → (𝐷𝐺) ≤ 𝐽)       (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
 
Theoremcoe1mul4 25274 Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑌 = (Poly1𝑅)    &    = (.r𝑌)    &    · = (.r𝑅)    &   𝐵 = (Base‘𝑌)    &   𝐷 = ( deg1𝑅)    &    0 = (0g𝑌)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑𝐹0 )    &   (𝜑𝐺𝐵)    &   (𝜑𝐺0 )       (𝜑 → ((coe1‘(𝐹 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) = (((coe1𝐹)‘(𝐷𝐹)) · ((coe1𝐺)‘(𝐷𝐺))))
 
Theoremdeg1addle 25275 The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
 
Theoremdeg1addle2 25276 If both factors have degree bounded by 𝐿, then the sum of the polynomials also has degree bounded by 𝐿. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑𝐿 ∈ ℝ*)    &   (𝜑 → (𝐷𝐹) ≤ 𝐿)    &   (𝜑 → (𝐷𝐺) ≤ 𝐿)       (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ 𝐿)
 
Theoremdeg1add 25277 Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑 → (𝐷𝐺) < (𝐷𝐹))       (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))
 
Theoremdeg1vscale 25278 The degree of a scalar times a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &   𝐾 = (Base‘𝑅)    &    · = ( ·𝑠𝑌)    &   (𝜑𝐹𝐾)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))
 
Theoremdeg1vsca 25279 The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &   𝐸 = (RLReg‘𝑅)    &    · = ( ·𝑠𝑌)    &   (𝜑𝐹𝐸)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷𝐺))
 
Theoremdeg1invg 25280 The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &   𝑁 = (invg𝑌)    &   (𝜑𝐹𝐵)       (𝜑 → (𝐷‘(𝑁𝐹)) = (𝐷𝐹))
 
Theoremdeg1suble 25281 The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    = (-g𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐷‘(𝐹 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
 
Theoremdeg1sub 25282 Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    = (-g𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑 → (𝐷𝐺) < (𝐷𝐹))       (𝜑 → (𝐷‘(𝐹 𝐺)) = (𝐷𝐹))
 
Theoremdeg1mulle2 25283 Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝑌 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑌)    &    · = (.r𝑌)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑𝐽 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐷𝐹) ≤ 𝐽)    &   (𝜑 → (𝐷𝐺) ≤ 𝐾)       (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
 
Theoremdeg1sublt 25284 Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    = (-g𝑃)    &   (𝜑𝐿 ∈ ℕ0)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑 → (𝐷𝐹) ≤ 𝐿)    &   (𝜑𝐺𝐵)    &   (𝜑 → (𝐷𝐺) ≤ 𝐿)    &   𝐴 = (coe1𝐹)    &   𝐶 = (coe1𝐺)    &   (𝜑 → ((coe1𝐹)‘𝐿) = ((coe1𝐺)‘𝐿))       (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝐿)
 
Theoremdeg1le0 25285 A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐴 = (algSc‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘((coe1𝐹)‘0))))
 
Theoremdeg1sclle 25286 A scalar polynomial has nonpositive degree. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐴 = (algSc‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐷‘(𝐴𝐹)) ≤ 0)
 
Theoremdeg1scl 25287 A nonzero scalar polynomial has zero degree. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐴 = (algSc‘𝑃)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐹0 ) → (𝐷‘(𝐴𝐹)) = 0)
 
Theoremdeg1mul2 25288 Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐸 = (RLReg‘𝑅)    &   𝐵 = (Base‘𝑃)    &    · = (.r𝑃)    &    0 = (0g𝑃)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑𝐹0 )    &   (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝐸)    &   (𝜑𝐺𝐵)    &   (𝜑𝐺0 )       (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷𝐹) + (𝐷𝐺)))
 
Theoremdeg1mul3 25289 Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐸 = (RLReg‘𝑅)    &   𝐵 = (Base‘𝑃)    &    · = (.r𝑃)    &   𝐴 = (algSc‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = (𝐷𝐺))
 
Theoremdeg1mul3le 25290 Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐵 = (Base‘𝑃)    &    · = (.r𝑃)    &   𝐴 = (algSc‘𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))
 
Theoremdeg1tmle 25291 Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑃)    &   𝑁 = (mulGrp‘𝑃)    &    = (.g𝑁)       ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 𝑋))) ≤ 𝐹)
 
Theoremdeg1tm 25292 Exact degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝐾 = (Base‘𝑅)    &   𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑃)    &   𝑁 = (mulGrp‘𝑃)    &    = (.g𝑁)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ (𝐶𝐾𝐶0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 𝑋))) = 𝐹)
 
Theoremdeg1pwle 25293 Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &   𝑁 = (mulGrp‘𝑃)    &    = (.g𝑁)       ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 𝑋)) ≤ 𝐹)
 
Theoremdeg1pw 25294 Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝐷 = ( deg1𝑅)    &   𝑃 = (Poly1𝑅)    &   𝑋 = (var1𝑅)    &   𝑁 = (mulGrp‘𝑃)    &    = (.g𝑁)       ((𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 𝑋)) = 𝐹)
 
Theoremply1nz 25295 Univariate polynomials over a nonzero ring are a nonzero ring. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
 
Theoremply1nzb 25296 Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing))
 
Theoremply1domn 25297 Corollary of deg1mul2 25288: the univariate polynomials over a domain are a domain. This is true for multivariate but with a much more complicated proof. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ Domn → 𝑃 ∈ Domn)
 
Theoremply1idom 25298 The ring of univariate polynomials over an integral domain is itself an integral domain. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ IDomn → 𝑃 ∈ IDomn)
 
14.1.2  The division algorithm for univariate polynomials
 
Syntaxcmn1 25299 Monic polynomials.
class Monic1p
 
Syntaxcuc1p 25300 Unitic polynomials.
class Unic1p
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >