MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolval Structured version   Visualization version   GIF version

Theorem ovolval 24077
Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 17-Sep-2020.)
Hypothesis
Ref Expression
ovolval.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolval (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable group:   𝐴,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reex 10617 . . 3 ℝ ∈ V
21elpw2 5212 . 2 (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)
3 cleq1lem 14333 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
43rexbidv 3256 . . . . . 6 (𝑥 = 𝐴 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
54rabbidv 3427 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))})
6 ovolval.1 . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
75, 6eqtr4di 2851 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = 𝑀)
87infeq1d 8925 . . 3 (𝑥 = 𝐴 → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
9 df-ovol 24068 . . 3 vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
10 xrltso 12522 . . . 4 < Or ℝ*
1110infex 8941 . . 3 inf(𝑀, ℝ*, < ) ∈ V
128, 9, 11fvmpt 6745 . 2 (𝐴 ∈ 𝒫 ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
132, 12sylbir 238 1 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   × cxp 5517  ran crn 5520  ccom 5523  cfv 6324  (class class class)co 7135  m cmap 8389  supcsup 8888  infcinf 8889  cr 10525  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859  cn 11625  (,)cioo 12726  seqcseq 13364  abscabs 14585  vol*covol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-ovol 24068
This theorem is referenced by:  ovolcl  24082  ovollb  24083  ovolgelb  24084  ovolge0  24085  ovolsslem  24088  ovolshft  24115  ovolicc2  24126  ismblfin  35098  ovolval2  43283
  Copyright terms: Public domain W3C validator