MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolf Structured version   Visualization version   GIF version

Theorem ovolf 25399
Description: The domain and codomain of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.)
Assertion
Ref Expression
ovolf vol*:𝒫 ℝ⟶(0[,]+∞)

Proof of Theorem ovolf
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13061 . . . 4 < Or ℝ*
21infex 9404 . . 3 inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ∈ V
3 df-ovol 25381 . . 3 vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
42, 3fnmpti 6629 . 2 vol* Fn 𝒫 ℝ
5 elpwi 4560 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
6 ovolcl 25395 . . . . 5 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*)
7 ovolge0 25398 . . . . 5 (𝑥 ⊆ ℝ → 0 ≤ (vol*‘𝑥))
8 pnfge 13050 . . . . . 6 ((vol*‘𝑥) ∈ ℝ* → (vol*‘𝑥) ≤ +∞)
96, 8syl 17 . . . . 5 (𝑥 ⊆ ℝ → (vol*‘𝑥) ≤ +∞)
10 0xr 11181 . . . . . 6 0 ∈ ℝ*
11 pnfxr 11188 . . . . . 6 +∞ ∈ ℝ*
12 elicc1 13310 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞)))
1310, 11, 12mp2an 692 . . . . 5 ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞))
146, 7, 9, 13syl3anbrc 1344 . . . 4 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
155, 14syl 17 . . 3 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
1615rgen 3046 . 2 𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞)
17 ffnfv 7057 . 2 (vol*:𝒫 ℝ⟶(0[,]+∞) ↔ (vol* Fn 𝒫 ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞)))
184, 16, 17mpbir2an 711 1 vol*:𝒫 ℝ⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861   class class class wbr 5095   × cxp 5621  ran crn 5624  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  supcsup 9349  infcinf 9350  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cmin 11365  cn 12146  (,)cioo 13266  [,]cicc 13269  seqcseq 13926  abscabs 15159  vol*covol 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-ovol 25381
This theorem is referenced by:  ismbl  25443  volf  25446  ovolfs2  25488  ismbl3  45968  ovolsplit  45970
  Copyright terms: Public domain W3C validator