| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolf | Structured version Visualization version GIF version | ||
| Description: The domain and codomain of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| Ref | Expression |
|---|---|
| ovolf | ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13101 | . . . 4 ⊢ < Or ℝ* | |
| 2 | 1 | infex 9446 | . . 3 ⊢ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ∈ V |
| 3 | df-ovol 25365 | . . 3 ⊢ vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < )) | |
| 4 | 2, 3 | fnmpti 6661 | . 2 ⊢ vol* Fn 𝒫 ℝ |
| 5 | elpwi 4570 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
| 6 | ovolcl 25379 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*) | |
| 7 | ovolge0 25382 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → 0 ≤ (vol*‘𝑥)) | |
| 8 | pnfge 13090 | . . . . . 6 ⊢ ((vol*‘𝑥) ∈ ℝ* → (vol*‘𝑥) ≤ +∞) | |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ≤ +∞) |
| 10 | 0xr 11221 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
| 11 | pnfxr 11228 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 12 | elicc1 13350 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞))) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . . 5 ⊢ ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞)) |
| 14 | 6, 7, 9, 13 | syl3anbrc 1344 | . . . 4 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ (0[,]+∞)) |
| 15 | 5, 14 | syl 17 | . . 3 ⊢ (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞)) |
| 16 | 15 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞) |
| 17 | ffnfv 7091 | . 2 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) ↔ (vol* Fn 𝒫 ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞))) | |
| 18 | 4, 16, 17 | mpbir2an 711 | 1 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3405 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 × cxp 5636 ran crn 5639 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 supcsup 9391 infcinf 9392 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 ℕcn 12186 (,)cioo 13306 [,]cicc 13309 seqcseq 13966 abscabs 15200 vol*covol 25363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-icc 13313 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-ovol 25365 |
| This theorem is referenced by: ismbl 25427 volf 25430 ovolfs2 25472 ismbl3 45984 ovolsplit 45986 |
| Copyright terms: Public domain | W3C validator |