MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolf Structured version   Visualization version   GIF version

Theorem ovolf 25531
Description: The domain and codomain of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.)
Assertion
Ref Expression
ovolf vol*:𝒫 ℝ⟶(0[,]+∞)

Proof of Theorem ovolf
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13180 . . . 4 < Or ℝ*
21infex 9531 . . 3 inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ∈ V
3 df-ovol 25513 . . 3 vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
42, 3fnmpti 6712 . 2 vol* Fn 𝒫 ℝ
5 elpwi 4612 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
6 ovolcl 25527 . . . . 5 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*)
7 ovolge0 25530 . . . . 5 (𝑥 ⊆ ℝ → 0 ≤ (vol*‘𝑥))
8 pnfge 13170 . . . . . 6 ((vol*‘𝑥) ∈ ℝ* → (vol*‘𝑥) ≤ +∞)
96, 8syl 17 . . . . 5 (𝑥 ⊆ ℝ → (vol*‘𝑥) ≤ +∞)
10 0xr 11306 . . . . . 6 0 ∈ ℝ*
11 pnfxr 11313 . . . . . 6 +∞ ∈ ℝ*
12 elicc1 13428 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞)))
1310, 11, 12mp2an 692 . . . . 5 ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞))
146, 7, 9, 13syl3anbrc 1342 . . . 4 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
155, 14syl 17 . . 3 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
1615rgen 3061 . 2 𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞)
17 ffnfv 7139 . 2 (vol*:𝒫 ℝ⟶(0[,]+∞) ↔ (vol* Fn 𝒫 ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞)))
184, 16, 17mpbir2an 711 1 vol*:𝒫 ℝ⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912   class class class wbr 5148   × cxp 5687  ran crn 5690  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  supcsup 9478  infcinf 9479  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490  cn 12264  (,)cioo 13384  [,]cicc 13387  seqcseq 14039  abscabs 15270  vol*covol 25511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-ovol 25513
This theorem is referenced by:  ismbl  25575  volf  25578  ovolfs2  25620  ismbl3  45942  ovolsplit  45944
  Copyright terms: Public domain W3C validator