Detailed syntax breakdown of Definition df-pclN
Step | Hyp | Ref
| Expression |
1 | | cpclN 37498 |
. 2
class
PCl |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | 2 | cv 1537 |
. . . . . 6
class 𝑘 |
6 | | catm 36874 |
. . . . . 6
class
Atoms |
7 | 5, 6 | cfv 6340 |
. . . . 5
class
(Atoms‘𝑘) |
8 | 7 | cpw 4497 |
. . . 4
class 𝒫
(Atoms‘𝑘) |
9 | 4 | cv 1537 |
. . . . . . 7
class 𝑥 |
10 | | vy |
. . . . . . . 8
setvar 𝑦 |
11 | 10 | cv 1537 |
. . . . . . 7
class 𝑦 |
12 | 9, 11 | wss 3860 |
. . . . . 6
wff 𝑥 ⊆ 𝑦 |
13 | | cpsubsp 37107 |
. . . . . . 7
class
PSubSp |
14 | 5, 13 | cfv 6340 |
. . . . . 6
class
(PSubSp‘𝑘) |
15 | 12, 10, 14 | crab 3074 |
. . . . 5
class {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} |
16 | 15 | cint 4841 |
. . . 4
class ∩ {𝑦
∈ (PSubSp‘𝑘)
∣ 𝑥 ⊆ 𝑦} |
17 | 4, 8, 16 | cmpt 5116 |
. . 3
class (𝑥 ∈ 𝒫
(Atoms‘𝑘) ↦
∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦}) |
18 | 2, 3, 17 | cmpt 5116 |
. 2
class (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫
(Atoms‘𝑘) ↦
∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) |
19 | 1, 18 | wceq 1538 |
1
wff PCl =
(𝑘 ∈ V ↦ (𝑥 ∈ 𝒫
(Atoms‘𝑘) ↦
∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) |