Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfvalN Structured version   Visualization version   GIF version

Theorem pclfvalN 38748
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atomsβ€˜πΎ)
pclfval.s 𝑆 = (PSubSpβ€˜πΎ)
pclfval.c π‘ˆ = (PClβ€˜πΎ)
Assertion
Ref Expression
pclfvalN (𝐾 ∈ 𝑉 β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐾,𝑦   π‘₯,𝑆,𝑦
Allowed substitution hints:   π‘ˆ(π‘₯,𝑦)   𝑉(π‘₯,𝑦)

Proof of Theorem pclfvalN
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 pclfval.c . . 3 π‘ˆ = (PClβ€˜πΎ)
3 fveq2 6888 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
4 pclfval.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
53, 4eqtr4di 2790 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
65pweqd 4618 . . . . 5 (π‘˜ = 𝐾 β†’ 𝒫 (Atomsβ€˜π‘˜) = 𝒫 𝐴)
7 fveq2 6888 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (PSubSpβ€˜π‘˜) = (PSubSpβ€˜πΎ))
8 pclfval.s . . . . . . . 8 𝑆 = (PSubSpβ€˜πΎ)
97, 8eqtr4di 2790 . . . . . . 7 (π‘˜ = 𝐾 β†’ (PSubSpβ€˜π‘˜) = 𝑆)
109rabeqdv 3447 . . . . . 6 (π‘˜ = 𝐾 β†’ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦} = {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})
1110inteqd 4954 . . . . 5 (π‘˜ = 𝐾 β†’ ∩ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})
126, 11mpteq12dv 5238 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ 𝒫 (Atomsβ€˜π‘˜) ↦ ∩ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦}) = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
13 df-pclN 38747 . . . 4 PCl = (π‘˜ ∈ V ↦ (π‘₯ ∈ 𝒫 (Atomsβ€˜π‘˜) ↦ ∩ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦}))
144fvexi 6902 . . . . . 6 𝐴 ∈ V
1514pwex 5377 . . . . 5 𝒫 𝐴 ∈ V
1615mptex 7221 . . . 4 (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}) ∈ V
1712, 13, 16fvmpt 6995 . . 3 (𝐾 ∈ V β†’ (PClβ€˜πΎ) = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
182, 17eqtrid 2784 . 2 (𝐾 ∈ V β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
191, 18syl 17 1 (𝐾 ∈ 𝑉 β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3947  π’« cpw 4601  βˆ© cint 4949   ↦ cmpt 5230  β€˜cfv 6540  Atomscatm 38121  PSubSpcpsubsp 38355  PClcpclN 38746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-pclN 38747
This theorem is referenced by:  pclvalN  38749
  Copyright terms: Public domain W3C validator