![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclfvalN | Structured version Visualization version GIF version |
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | β’ π΄ = (AtomsβπΎ) |
pclfval.s | β’ π = (PSubSpβπΎ) |
pclfval.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pclfvalN | β’ (πΎ β π β π = (π₯ β π« π΄ β¦ β© {π¦ β π β£ π₯ β π¦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (πΎ β π β πΎ β V) | |
2 | pclfval.c | . . 3 β’ π = (PClβπΎ) | |
3 | fveq2 6888 | . . . . . . 7 β’ (π = πΎ β (Atomsβπ) = (AtomsβπΎ)) | |
4 | pclfval.a | . . . . . . 7 β’ π΄ = (AtomsβπΎ) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . 6 β’ (π = πΎ β (Atomsβπ) = π΄) |
6 | 5 | pweqd 4618 | . . . . 5 β’ (π = πΎ β π« (Atomsβπ) = π« π΄) |
7 | fveq2 6888 | . . . . . . . 8 β’ (π = πΎ β (PSubSpβπ) = (PSubSpβπΎ)) | |
8 | pclfval.s | . . . . . . . 8 β’ π = (PSubSpβπΎ) | |
9 | 7, 8 | eqtr4di 2790 | . . . . . . 7 β’ (π = πΎ β (PSubSpβπ) = π) |
10 | 9 | rabeqdv 3447 | . . . . . 6 β’ (π = πΎ β {π¦ β (PSubSpβπ) β£ π₯ β π¦} = {π¦ β π β£ π₯ β π¦}) |
11 | 10 | inteqd 4954 | . . . . 5 β’ (π = πΎ β β© {π¦ β (PSubSpβπ) β£ π₯ β π¦} = β© {π¦ β π β£ π₯ β π¦}) |
12 | 6, 11 | mpteq12dv 5238 | . . . 4 β’ (π = πΎ β (π₯ β π« (Atomsβπ) β¦ β© {π¦ β (PSubSpβπ) β£ π₯ β π¦}) = (π₯ β π« π΄ β¦ β© {π¦ β π β£ π₯ β π¦})) |
13 | df-pclN 38747 | . . . 4 β’ PCl = (π β V β¦ (π₯ β π« (Atomsβπ) β¦ β© {π¦ β (PSubSpβπ) β£ π₯ β π¦})) | |
14 | 4 | fvexi 6902 | . . . . . 6 β’ π΄ β V |
15 | 14 | pwex 5377 | . . . . 5 β’ π« π΄ β V |
16 | 15 | mptex 7221 | . . . 4 β’ (π₯ β π« π΄ β¦ β© {π¦ β π β£ π₯ β π¦}) β V |
17 | 12, 13, 16 | fvmpt 6995 | . . 3 β’ (πΎ β V β (PClβπΎ) = (π₯ β π« π΄ β¦ β© {π¦ β π β£ π₯ β π¦})) |
18 | 2, 17 | eqtrid 2784 | . 2 β’ (πΎ β V β π = (π₯ β π« π΄ β¦ β© {π¦ β π β£ π₯ β π¦})) |
19 | 1, 18 | syl 17 | 1 β’ (πΎ β π β π = (π₯ β π« π΄ β¦ β© {π¦ β π β£ π₯ β π¦})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3947 π« cpw 4601 β© cint 4949 β¦ cmpt 5230 βcfv 6540 Atomscatm 38121 PSubSpcpsubsp 38355 PClcpclN 38746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-pclN 38747 |
This theorem is referenced by: pclvalN 38749 |
Copyright terms: Public domain | W3C validator |