Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfvalN Structured version   Visualization version   GIF version

Theorem pclfvalN 40008
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclfvalN (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem pclfvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐾𝑉𝐾 ∈ V)
2 pclfval.c . . 3 𝑈 = (PCl‘𝐾)
3 fveq2 6828 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 pclfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2786 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65pweqd 4566 . . . . 5 (𝑘 = 𝐾 → 𝒫 (Atoms‘𝑘) = 𝒫 𝐴)
7 fveq2 6828 . . . . . . . 8 (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾))
8 pclfval.s . . . . . . . 8 𝑆 = (PSubSp‘𝐾)
97, 8eqtr4di 2786 . . . . . . 7 (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆)
109rabeqdv 3411 . . . . . 6 (𝑘 = 𝐾 → {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦} = {𝑦𝑆𝑥𝑦})
1110inteqd 4902 . . . . 5 (𝑘 = 𝐾 {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦} = {𝑦𝑆𝑥𝑦})
126, 11mpteq12dv 5180 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦}) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
13 df-pclN 40007 . . . 4 PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦}))
144fvexi 6842 . . . . . 6 𝐴 ∈ V
1514pwex 5320 . . . . 5 𝒫 𝐴 ∈ V
1615mptex 7163 . . . 4 (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}) ∈ V
1712, 13, 16fvmpt 6935 . . 3 (𝐾 ∈ V → (PCl‘𝐾) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
182, 17eqtrid 2780 . 2 (𝐾 ∈ V → 𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
191, 18syl 17 1 (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  wss 3898  𝒫 cpw 4549   cint 4897  cmpt 5174  cfv 6486  Atomscatm 39382  PSubSpcpsubsp 39615  PClcpclN 40006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-pclN 40007
This theorem is referenced by:  pclvalN  40009
  Copyright terms: Public domain W3C validator