![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclfvalN | Structured version Visualization version GIF version |
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclfvalN | ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | pclfval.c | . . 3 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | fveq2 6920 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
4 | pclfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
6 | 5 | pweqd 4639 | . . . . 5 ⊢ (𝑘 = 𝐾 → 𝒫 (Atoms‘𝑘) = 𝒫 𝐴) |
7 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾)) | |
8 | pclfval.s | . . . . . . . 8 ⊢ 𝑆 = (PSubSp‘𝐾) | |
9 | 7, 8 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆) |
10 | 9 | rabeqdv 3459 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
11 | 10 | inteqd 4975 | . . . . 5 ⊢ (𝑘 = 𝐾 → ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
12 | 6, 11 | mpteq12dv 5257 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
13 | df-pclN 39845 | . . . 4 ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | |
14 | 4 | fvexi 6934 | . . . . . 6 ⊢ 𝐴 ∈ V |
15 | 14 | pwex 5398 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
16 | 15 | mptex 7260 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) ∈ V |
17 | 12, 13, 16 | fvmpt 7029 | . . 3 ⊢ (𝐾 ∈ V → (PCl‘𝐾) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
18 | 2, 17 | eqtrid 2792 | . 2 ⊢ (𝐾 ∈ V → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
19 | 1, 18 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∩ cint 4970 ↦ cmpt 5249 ‘cfv 6573 Atomscatm 39219 PSubSpcpsubsp 39453 PClcpclN 39844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-pclN 39845 |
This theorem is referenced by: pclvalN 39847 |
Copyright terms: Public domain | W3C validator |