Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclfvalN | Structured version Visualization version GIF version |
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclfvalN | ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | pclfval.c | . . 3 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
4 | pclfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
6 | 5 | pweqd 4549 | . . . . 5 ⊢ (𝑘 = 𝐾 → 𝒫 (Atoms‘𝑘) = 𝒫 𝐴) |
7 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾)) | |
8 | pclfval.s | . . . . . . . 8 ⊢ 𝑆 = (PSubSp‘𝐾) | |
9 | 7, 8 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆) |
10 | 9 | rabeqdv 3409 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
11 | 10 | inteqd 4881 | . . . . 5 ⊢ (𝑘 = 𝐾 → ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
12 | 6, 11 | mpteq12dv 5161 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
13 | df-pclN 37829 | . . . 4 ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | |
14 | 4 | fvexi 6770 | . . . . . 6 ⊢ 𝐴 ∈ V |
15 | 14 | pwex 5298 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
16 | 15 | mptex 7081 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) ∈ V |
17 | 12, 13, 16 | fvmpt 6857 | . . 3 ⊢ (𝐾 ∈ V → (PCl‘𝐾) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
18 | 2, 17 | syl5eq 2791 | . 2 ⊢ (𝐾 ∈ V → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
19 | 1, 18 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∩ cint 4876 ↦ cmpt 5153 ‘cfv 6418 Atomscatm 37204 PSubSpcpsubsp 37437 PClcpclN 37828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-pclN 37829 |
This theorem is referenced by: pclvalN 37831 |
Copyright terms: Public domain | W3C validator |