Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfvalN Structured version   Visualization version   GIF version

Theorem pclfvalN 39394
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atomsβ€˜πΎ)
pclfval.s 𝑆 = (PSubSpβ€˜πΎ)
pclfval.c π‘ˆ = (PClβ€˜πΎ)
Assertion
Ref Expression
pclfvalN (𝐾 ∈ 𝑉 β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐾,𝑦   π‘₯,𝑆,𝑦
Allowed substitution hints:   π‘ˆ(π‘₯,𝑦)   𝑉(π‘₯,𝑦)

Proof of Theorem pclfvalN
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 pclfval.c . . 3 π‘ˆ = (PClβ€˜πΎ)
3 fveq2 6902 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
4 pclfval.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
53, 4eqtr4di 2786 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
65pweqd 4623 . . . . 5 (π‘˜ = 𝐾 β†’ 𝒫 (Atomsβ€˜π‘˜) = 𝒫 𝐴)
7 fveq2 6902 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (PSubSpβ€˜π‘˜) = (PSubSpβ€˜πΎ))
8 pclfval.s . . . . . . . 8 𝑆 = (PSubSpβ€˜πΎ)
97, 8eqtr4di 2786 . . . . . . 7 (π‘˜ = 𝐾 β†’ (PSubSpβ€˜π‘˜) = 𝑆)
109rabeqdv 3446 . . . . . 6 (π‘˜ = 𝐾 β†’ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦} = {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})
1110inteqd 4958 . . . . 5 (π‘˜ = 𝐾 β†’ ∩ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦})
126, 11mpteq12dv 5243 . . . 4 (π‘˜ = 𝐾 β†’ (π‘₯ ∈ 𝒫 (Atomsβ€˜π‘˜) ↦ ∩ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦}) = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
13 df-pclN 39393 . . . 4 PCl = (π‘˜ ∈ V ↦ (π‘₯ ∈ 𝒫 (Atomsβ€˜π‘˜) ↦ ∩ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦}))
144fvexi 6916 . . . . . 6 𝐴 ∈ V
1514pwex 5384 . . . . 5 𝒫 𝐴 ∈ V
1615mptex 7241 . . . 4 (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}) ∈ V
1712, 13, 16fvmpt 7010 . . 3 (𝐾 ∈ V β†’ (PClβ€˜πΎ) = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
182, 17eqtrid 2780 . 2 (𝐾 ∈ V β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
191, 18syl 17 1 (𝐾 ∈ 𝑉 β†’ π‘ˆ = (π‘₯ ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ π‘₯ βŠ† 𝑦}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3430  Vcvv 3473   βŠ† wss 3949  π’« cpw 4606  βˆ© cint 4953   ↦ cmpt 5235  β€˜cfv 6553  Atomscatm 38767  PSubSpcpsubsp 39001  PClcpclN 39392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-pclN 39393
This theorem is referenced by:  pclvalN  39395
  Copyright terms: Public domain W3C validator