Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfvalN Structured version   Visualization version   GIF version

Theorem pclfvalN 39883
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclfvalN (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem pclfvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐾𝑉𝐾 ∈ V)
2 pclfval.c . . 3 𝑈 = (PCl‘𝐾)
3 fveq2 6858 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 pclfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2782 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65pweqd 4580 . . . . 5 (𝑘 = 𝐾 → 𝒫 (Atoms‘𝑘) = 𝒫 𝐴)
7 fveq2 6858 . . . . . . . 8 (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾))
8 pclfval.s . . . . . . . 8 𝑆 = (PSubSp‘𝐾)
97, 8eqtr4di 2782 . . . . . . 7 (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆)
109rabeqdv 3421 . . . . . 6 (𝑘 = 𝐾 → {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦} = {𝑦𝑆𝑥𝑦})
1110inteqd 4915 . . . . 5 (𝑘 = 𝐾 {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦} = {𝑦𝑆𝑥𝑦})
126, 11mpteq12dv 5194 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦}) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
13 df-pclN 39882 . . . 4 PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦}))
144fvexi 6872 . . . . . 6 𝐴 ∈ V
1514pwex 5335 . . . . 5 𝒫 𝐴 ∈ V
1615mptex 7197 . . . 4 (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}) ∈ V
1712, 13, 16fvmpt 6968 . . 3 (𝐾 ∈ V → (PCl‘𝐾) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
182, 17eqtrid 2776 . 2 (𝐾 ∈ V → 𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
191, 18syl 17 1 (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563   cint 4910  cmpt 5188  cfv 6511  Atomscatm 39256  PSubSpcpsubsp 39490  PClcpclN 39881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-pclN 39882
This theorem is referenced by:  pclvalN  39884
  Copyright terms: Public domain W3C validator