| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclfvalN | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclfvalN | ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
| 2 | pclfval.c | . . 3 ⊢ 𝑈 = (PCl‘𝐾) | |
| 3 | fveq2 6858 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
| 4 | pclfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 6 | 5 | pweqd 4580 | . . . . 5 ⊢ (𝑘 = 𝐾 → 𝒫 (Atoms‘𝑘) = 𝒫 𝐴) |
| 7 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾)) | |
| 8 | pclfval.s | . . . . . . . 8 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆) |
| 10 | 9 | rabeqdv 3421 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
| 11 | 10 | inteqd 4915 | . . . . 5 ⊢ (𝑘 = 𝐾 → ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
| 12 | 6, 11 | mpteq12dv 5194 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
| 13 | df-pclN 39882 | . . . 4 ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | |
| 14 | 4 | fvexi 6872 | . . . . . 6 ⊢ 𝐴 ∈ V |
| 15 | 14 | pwex 5335 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
| 16 | 15 | mptex 7197 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6968 | . . 3 ⊢ (𝐾 ∈ V → (PCl‘𝐾) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
| 18 | 2, 17 | eqtrid 2776 | . 2 ⊢ (𝐾 ∈ V → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
| 19 | 1, 18 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∩ cint 4910 ↦ cmpt 5188 ‘cfv 6511 Atomscatm 39256 PSubSpcpsubsp 39490 PClcpclN 39881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-pclN 39882 |
| This theorem is referenced by: pclvalN 39884 |
| Copyright terms: Public domain | W3C validator |