Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-pell14qr Structured version   Visualization version   GIF version

Definition df-pell14qr 40581
Description: Define the positive solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
df-pell14qr Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Detailed syntax breakdown of Definition df-pell14qr
StepHypRef Expression
1 cpell14qr 40577 . 2 class Pell14QR
2 vx . . 3 setvar 𝑥
3 cn 11903 . . . 4 class
4 csquarenn 40574 . . . 4 class NN
53, 4cdif 3880 . . 3 class (ℕ ∖ ◻NN)
6 vy . . . . . . . . 9 setvar 𝑦
76cv 1538 . . . . . . . 8 class 𝑦
8 vz . . . . . . . . . 10 setvar 𝑧
98cv 1538 . . . . . . . . 9 class 𝑧
102cv 1538 . . . . . . . . . . 11 class 𝑥
11 csqrt 14872 . . . . . . . . . . 11 class
1210, 11cfv 6418 . . . . . . . . . 10 class (√‘𝑥)
13 vw . . . . . . . . . . 11 setvar 𝑤
1413cv 1538 . . . . . . . . . 10 class 𝑤
15 cmul 10807 . . . . . . . . . 10 class ·
1612, 14, 15co 7255 . . . . . . . . 9 class ((√‘𝑥) · 𝑤)
17 caddc 10805 . . . . . . . . 9 class +
189, 16, 17co 7255 . . . . . . . 8 class (𝑧 + ((√‘𝑥) · 𝑤))
197, 18wceq 1539 . . . . . . 7 wff 𝑦 = (𝑧 + ((√‘𝑥) · 𝑤))
20 c2 11958 . . . . . . . . . 10 class 2
21 cexp 13710 . . . . . . . . . 10 class
229, 20, 21co 7255 . . . . . . . . 9 class (𝑧↑2)
2314, 20, 21co 7255 . . . . . . . . . 10 class (𝑤↑2)
2410, 23, 15co 7255 . . . . . . . . 9 class (𝑥 · (𝑤↑2))
25 cmin 11135 . . . . . . . . 9 class
2622, 24, 25co 7255 . . . . . . . 8 class ((𝑧↑2) − (𝑥 · (𝑤↑2)))
27 c1 10803 . . . . . . . 8 class 1
2826, 27wceq 1539 . . . . . . 7 wff ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1
2919, 28wa 395 . . . . . 6 wff (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)
30 cz 12249 . . . . . 6 class
3129, 13, 30wrex 3064 . . . . 5 wff 𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)
32 cn0 12163 . . . . 5 class 0
3331, 8, 32wrex 3064 . . . 4 wff 𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)
34 cr 10801 . . . 4 class
3533, 6, 34crab 3067 . . 3 class {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}
362, 5, 35cmpt 5153 . 2 class (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
371, 36wceq 1539 1 wff Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  pell14qrval  40586
  Copyright terms: Public domain W3C validator