| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pell14qrval | Structured version Visualization version GIF version | ||
| Description: Value of the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| pell14qrval | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷)) | |
| 2 | 1 | oveq1d 7420 | . . . . . . 7 ⊢ (𝑎 = 𝐷 → ((√‘𝑎) · 𝑤) = ((√‘𝐷) · 𝑤)) |
| 3 | 2 | oveq2d 7421 | . . . . . 6 ⊢ (𝑎 = 𝐷 → (𝑧 + ((√‘𝑎) · 𝑤)) = (𝑧 + ((√‘𝐷) · 𝑤))) |
| 4 | 3 | eqeq2d 2746 | . . . . 5 ⊢ (𝑎 = 𝐷 → (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ↔ 𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)))) |
| 5 | oveq1 7412 | . . . . . . 7 ⊢ (𝑎 = 𝐷 → (𝑎 · (𝑤↑2)) = (𝐷 · (𝑤↑2))) | |
| 6 | 5 | oveq2d 7421 | . . . . . 6 ⊢ (𝑎 = 𝐷 → ((𝑧↑2) − (𝑎 · (𝑤↑2))) = ((𝑧↑2) − (𝐷 · (𝑤↑2)))) |
| 7 | 6 | eqeq1d 2737 | . . . . 5 ⊢ (𝑎 = 𝐷 → (((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1 ↔ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)) |
| 8 | 4, 7 | anbi12d 632 | . . . 4 ⊢ (𝑎 = 𝐷 → ((𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 9 | 8 | 2rexbidv 3206 | . . 3 ⊢ (𝑎 = 𝐷 → (∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 10 | 9 | rabbidv 3423 | . 2 ⊢ (𝑎 = 𝐷 → {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)} = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| 11 | df-pell14qr 42866 | . 2 ⊢ Pell14QR = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑎) · 𝑤)) ∧ ((𝑧↑2) − (𝑎 · (𝑤↑2))) = 1)}) | |
| 12 | reex 11220 | . . 3 ⊢ ℝ ∈ V | |
| 13 | 12 | rabex 5309 | . 2 ⊢ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ∈ V |
| 14 | 10, 11, 13 | fvmpt 6986 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ∖ cdif 3923 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℤcz 12588 ↑cexp 14079 √csqrt 15252 ◻NNcsquarenn 42859 Pell14QRcpell14qr 42862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-pell14qr 42866 |
| This theorem is referenced by: elpell14qr 42872 rmxyelqirr 42933 rmxyelqirrOLD 42934 |
| Copyright terms: Public domain | W3C validator |