Detailed syntax breakdown of Definition df-pell1234qr
| Step | Hyp | Ref
| Expression |
| 1 | | cpell1234qr 42849 |
. 2
class
Pell1234QR |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cn 12266 |
. . . 4
class
ℕ |
| 4 | | csquarenn 42847 |
. . . 4
class
◻NN |
| 5 | 3, 4 | cdif 3948 |
. . 3
class (ℕ
∖ ◻NN) |
| 6 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 8 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 9 | 8 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 10 | 2 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 11 | | csqrt 15272 |
. . . . . . . . . . 11
class
√ |
| 12 | 10, 11 | cfv 6561 |
. . . . . . . . . 10
class
(√‘𝑥) |
| 13 | | vw |
. . . . . . . . . . 11
setvar 𝑤 |
| 14 | 13 | cv 1539 |
. . . . . . . . . 10
class 𝑤 |
| 15 | | cmul 11160 |
. . . . . . . . . 10
class
· |
| 16 | 12, 14, 15 | co 7431 |
. . . . . . . . 9
class
((√‘𝑥)
· 𝑤) |
| 17 | | caddc 11158 |
. . . . . . . . 9
class
+ |
| 18 | 9, 16, 17 | co 7431 |
. . . . . . . 8
class (𝑧 + ((√‘𝑥) · 𝑤)) |
| 19 | 7, 18 | wceq 1540 |
. . . . . . 7
wff 𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) |
| 20 | | c2 12321 |
. . . . . . . . . 10
class
2 |
| 21 | | cexp 14102 |
. . . . . . . . . 10
class
↑ |
| 22 | 9, 20, 21 | co 7431 |
. . . . . . . . 9
class (𝑧↑2) |
| 23 | 14, 20, 21 | co 7431 |
. . . . . . . . . 10
class (𝑤↑2) |
| 24 | 10, 23, 15 | co 7431 |
. . . . . . . . 9
class (𝑥 · (𝑤↑2)) |
| 25 | | cmin 11492 |
. . . . . . . . 9
class
− |
| 26 | 22, 24, 25 | co 7431 |
. . . . . . . 8
class ((𝑧↑2) − (𝑥 · (𝑤↑2))) |
| 27 | | c1 11156 |
. . . . . . . 8
class
1 |
| 28 | 26, 27 | wceq 1540 |
. . . . . . 7
wff ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1 |
| 29 | 19, 28 | wa 395 |
. . . . . 6
wff (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1) |
| 30 | | cz 12613 |
. . . . . 6
class
ℤ |
| 31 | 29, 13, 30 | wrex 3070 |
. . . . 5
wff
∃𝑤 ∈
ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1) |
| 32 | 31, 8, 30 | wrex 3070 |
. . . 4
wff
∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1) |
| 33 | | cr 11154 |
. . . 4
class
ℝ |
| 34 | 32, 6, 33 | crab 3436 |
. . 3
class {𝑦 ∈ ℝ ∣
∃𝑧 ∈ ℤ
∃𝑤 ∈ ℤ
(𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)} |
| 35 | 2, 5, 34 | cmpt 5225 |
. 2
class (𝑥 ∈ (ℕ ∖
◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |
| 36 | 1, 35 | wceq 1540 |
1
wff Pell1234QR
= (𝑥 ∈ (ℕ
∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |