Home | Metamath
Proof Explorer Theorem List (p. 431 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tgioo4 43001 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
Theorem | fsummulc1f 43002* | Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15425 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) | ||
Theorem | fsumnncl 43003* | Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℕ) | ||
Theorem | fsumge0cl 43004* | The finite sum of nonnegative reals is a nonnegative real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) | ||
Theorem | fsumf1of 43005* | Re-index a finite sum using a bijection. Same as fsumf1o 15363, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑛 ∈ 𝐶 𝐷) | ||
Theorem | fsumiunss 43006* | Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 15461, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐷)𝐶 = Σ𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵 ∩ 𝐷)𝐶) | ||
Theorem | fsumreclf 43007* | Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) | ||
Theorem | fsumlessf 43008* | A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fsumsupp0 43009* | Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐹 supp 0)(𝐹‘𝑘) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑘)) | ||
Theorem | fsumsermpt 43010* | A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴) & ⊢ 𝐺 = seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | fmul01 43011* | Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ (𝐿...𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) ⇒ ⊢ (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1)) | ||
Theorem | fmulcl 43012* | If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ V) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑌) | ||
Theorem | fmuldfeqlem1 43013* | induction step for the proof of fmuldfeq 43014. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑓𝜑 & ⊢ Ⅎ𝑔𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) & ⊢ (𝜑 → (𝑁 + 1) ∈ (1...𝑀)) & ⊢ (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑁)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑁 + 1))) | ||
Theorem | fmuldfeq 43014* | X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑋‘𝑡) = (𝑍‘𝑡)) | ||
Theorem | fmul01lt1lem1 43015* | Given a finite multiplication of values betweeen 0 and 1, a value larger than its first element is larger the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐵‘𝐿) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | fmul01lt1lem2 43016* | Given a finite multiplication of values betweeen 0 and 1, a value 𝐸 larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑀)) & ⊢ (𝜑 → (𝐵‘𝐽) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | fmul01lt1 43017* | Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ 𝐴 = seq1( · , 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | cncfmptss 43018* | A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) | ||
Theorem | rrpsscn 43019 | The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ℝ+ ⊆ ℂ | ||
Theorem | mulc1cncfg 43020* | A version of mulc1cncf 23974 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) | ||
Theorem | infrglb 43021* | The infimum of a nonempty bounded set of reals is the greatest lower bound. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵)) | ||
Theorem | expcnfg 43022* | If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 23995. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) | ||
Theorem | prodeq2ad 43023* | Equality deduction for product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
Theorem | fprodsplit1 43024* | Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) | ||
Theorem | fprodexp 43025* | Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵↑𝑁) = (∏𝑘 ∈ 𝐴 𝐵↑𝑁)) | ||
Theorem | fprodabs2 43026* | The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘∏𝑘 ∈ 𝐴 𝐵) = ∏𝑘 ∈ 𝐴 (abs‘𝐵)) | ||
Theorem | fprod0 43027* | A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐶 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
Theorem | mccllem 43028* | * Induction step for mccl 43029. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m (𝐶 ∪ {𝐷}))) & ⊢ (𝜑 → ∀𝑏 ∈ (ℕ0 ↑m 𝐶)((!‘Σ𝑘 ∈ 𝐶 (𝑏‘𝑘)) / ∏𝑘 ∈ 𝐶 (!‘(𝑏‘𝑘))) ∈ ℕ) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵‘𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵‘𝑘))) ∈ ℕ) | ||
Theorem | mccl 43029* | A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m 𝐴)) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ 𝐴 (𝐵‘𝑘)) / ∏𝑘 ∈ 𝐴 (!‘(𝐵‘𝑘))) ∈ ℕ) | ||
Theorem | fprodcnlem 43030* | A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | fprodcn 43031* | A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | clim1fr1 43032* | A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | isumneg 43033* | Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 -𝐴 = -Σ𝑘 ∈ 𝑍 𝐴) | ||
Theorem | climrec 43034* | Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
Theorem | climmulf 43035* | A version of climmul 15270 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) | ||
Theorem | climexp 43036* | The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) | ||
Theorem | climinf 43037* | A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
Theorem | climsuselem1 43038* | The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐼‘𝐾) ∈ (ℤ≥‘𝐾)) | ||
Theorem | climsuse 43039* | A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐼 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) & ⊢ (𝜑 → 𝐺 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘(𝐼‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
Theorem | climrecf 43040* | A version of climrec 43034 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
Theorem | climneg 43041* | Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) | ||
Theorem | climinff 43042* | A version of climinf 43037 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
Theorem | climdivf 43043* | Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) | ||
Theorem | climreeq 43044 | If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | ellimciota 43045* | An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) & ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | climaddf 43046* | A version of climadd 15269 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) | ||
Theorem | mullimc 43047* | Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | ellimcabssub0 43048* | An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐷) ↔ 0 ∈ (𝐺 limℂ 𝐷))) | ||
Theorem | limcdm0 43049 | If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:∅⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) | ||
Theorem | islptre 43050* | An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ* ∀𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))) | ||
Theorem | limccog 43051 | Limit of the composition of two functions. If the limit of 𝐹 at 𝐴 is 𝐵 and the limit of 𝐺 at 𝐵 is 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐴 is 𝐶. With respect to limcco 24962 and limccnp 24960, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵})) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐺 ∘ 𝐹) limℂ 𝐴)) | ||
Theorem | limciccioolb 43052 | The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) | ||
Theorem | climf 43053* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15131, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | mullimcf 43054* | Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℂ) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | constlimc 43055* | Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) | ||
Theorem | rexlim2d 43056* | Inference removing two restricted quantifiers. Same as rexlimdvv 3221, but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | idlimc 43057* | Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑥) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝑋)) | ||
Theorem | divcnvg 43058* | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
Theorem | limcperiod 43059* | If 𝐹 is a periodic function with period 𝑇, the limit doesn't change if we shift the limiting point by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐵 ⊆ dom 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) & ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐵) limℂ (𝐷 + 𝑇))) | ||
Theorem | limcrecl 43060 | If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐿 ∈ ℝ) | ||
Theorem | sumnnodd 43061* | A series indexed by ℕ with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)))) | ||
Theorem | lptioo2 43062 | The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | lptioo1 43063 | The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | elprn1 43064 | A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) | ||
Theorem | elprn2 43065 | A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) | ||
Theorem | limcmptdm 43066* | The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ℂ) | ||
Theorem | clim2f 43067* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15131. Similar to clim2 15141, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | limcicciooub 43068 | The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵) = (𝐹 limℂ 𝐵)) | ||
Theorem | ltmod 43069 | A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) ⇒ ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) | ||
Theorem | islpcn 43070* | A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥 − 𝑃)) < 𝑒)) | ||
Theorem | lptre2pt 43071* | If a set in the real line has a limit point than it contains two distinct points that are closer than a given distance. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (abs‘(𝑥 − 𝑦)) < 𝐸)) | ||
Theorem | limsupre 43072* | If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐵, ℝ*, < ) = +∞) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | ||
Theorem | limcresiooub 43073 | The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) limℂ 𝐶)) | ||
Theorem | limcresioolb 43074 | The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) limℂ 𝐵)) | ||
Theorem | limcleqr 43075 | If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 = 𝑅) ⇒ ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | lptioo2cn 43076 | The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | lptioo1cn 43077 | The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | neglimc 43078* | Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → -𝐶 ∈ (𝐺 limℂ 𝐷)) | ||
Theorem | addlimc 43079* | Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | 0ellimcdiv 43080* | If the numerator converges to 0 and the denominator converges to a nonzero number, then the fraction converges to 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ∈ (𝐺 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → 0 ∈ (𝐻 limℂ 𝐸)) | ||
Theorem | clim2cf 43081* | Express the predicate 𝐹 converges to 𝐴. Similar to clim2 15141, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
Theorem | limclner 43082 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 ≠ 𝑅) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) | ||
Theorem | sublimc 43083* | Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | reclimc 43084* | Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (1 / 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐶) ∈ (𝐺 limℂ 𝐷)) | ||
Theorem | clim0cf 43085* | Express the predicate 𝐹 converges to 0. Similar to clim 15131, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) | ||
Theorem | limclr 43086 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) ⇒ ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) | ||
Theorem | divlimc 43087* | Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ≠ 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | expfac 43088* | Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) | ||
Theorem | climconstmpt 43089* | A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐴) | ||
Theorem | climresmpt 43090* | A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | ||
Theorem | climsubmpt 43091* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) | ||
Theorem | climsubc2mpt 43092* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐵)) | ||
Theorem | climsubc1mpt 43093* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐴 − 𝐶)) | ||
Theorem | fnlimfv 43094* | The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) | ||
Theorem | climreclf 43095* | The limit of a convergent real sequence is real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | climeldmeq 43096* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) | ||
Theorem | climf2 43097* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15131, but without the disjoint var constraint 𝜑𝑘 and 𝐹𝑘. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | fnlimcnv 43098* | The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) | ||
Theorem | climeldmeqmpt 43099* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) | ||
Theorem | climfveq 43100* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |