| Metamath
Proof Explorer Theorem List (p. 431 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | wopprc 43001 | Unrelated: Wiener pairs treat proper classes symmetrically. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1o ∈ {{{𝐴}, ∅}, {{𝐵}}}) | ||
| Theorem | rpnnen3lem 43002* | Lemma for rpnnen3 43003. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | ||
| Theorem | rpnnen3 43003 | Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ ℝ ≼ 𝒫 ℚ | ||
| Theorem | axac10 43004 | Characterization of choice similar to dffin1-5 10400. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
| ⊢ ( ≈ “ On) = V | ||
| Theorem | harinf 43005 | The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) | ||
| Theorem | wdom2d2 43006* | Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) | ||
| Theorem | ttac 43007 | Tarski's theorem about choice: infxpidm 10574 is equivalent to ax-ac 10471. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐)) | ||
| Theorem | pw2f1ocnv 43008* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9091, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴 ∧ ◡𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))))) | ||
| Theorem | pw2f1o2 43009* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9091, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴) | ||
| Theorem | pw2f1o2val 43010* | Function value of the pw2f1o2 43009 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) | ||
| Theorem | pw2f1o2val2 43011* | Membership in a mapped set under the pw2f1o2 43009 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) | ||
| Theorem | limsuc2 43012 | Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) | ||
| Theorem | wepwsolem 43013* | Transfer an ordering on characteristic functions by isomorphism to the power set. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} & ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝐹 = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) ⇒ ⊢ (𝐴 ∈ V → 𝐹 Isom 𝑈, 𝑇 ((2o ↑m 𝐴), 𝒫 𝐴)) | ||
| Theorem | wepwso 43014* | A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) | ||
| Theorem | dnnumch1 43015* | Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 10042. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) | ||
| Theorem | dnnumch2 43016* | Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) | ||
| Theorem | dnnumch3lem 43017* | Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) | ||
| Theorem | dnnumch3 43018* | Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})):𝐴–1-1→On) | ||
| Theorem | dnwech 43019* | Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) & ⊢ 𝐻 = {〈𝑣, 𝑤〉 ∣ ∩ (◡𝐹 “ {𝑣}) ∈ ∩ (◡𝐹 “ {𝑤})} ⇒ ⊢ (𝜑 → 𝐻 We 𝐴) | ||
| Theorem | fnwe2val 43020* | Lemma for fnwe2 43024. Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} ⇒ ⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) | ||
| Theorem | fnwe2lem1 43021* | Lemma for fnwe2 43024. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) | ||
| Theorem | fnwe2lem2 43022* | Lemma for fnwe2 43024. An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus 𝑇 is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑎 ⊆ 𝐴) & ⊢ (𝜑 → 𝑎 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏) | ||
| Theorem | fnwe2lem3 43023* | Lemma for fnwe2 43024. Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) | ||
| Theorem | fnwe2 43024* | A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 8129 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) ⇒ ⊢ (𝜑 → 𝑇 We 𝐴) | ||
| Theorem | aomclem1 43025* |
Lemma for dfac11 43033. This is the beginning of the proof that
multiple
choice is equivalent to choice. Our goal is to construct, by
transfinite recursion, a well-ordering of (𝑅1‘𝐴). In what
follows, 𝐴 is the index of the rank we wish to
well-order, 𝑧 is
the collection of well-orderings constructed so far, dom 𝑧 is
the
set of ordinal indices of constructed ranks i.e. the next rank to
construct, and 𝑦 is a postulated multiple-choice
function.
Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) ⇒ ⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem2 43026* | Lemma for dfac11 43033. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) | ||
| Theorem | aomclem3 43027* | Lemma for dfac11 43033. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem4 43028* | Lemma for dfac11 43033. Limit case. Patch together well-orderings constructed so far using fnwe2 43024 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) ⇒ ⊢ (𝜑 → 𝐹 We (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem5 43029* | Lemma for dfac11 43033. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → 𝐺 We (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem6 43030* | Lemma for dfac11 43033. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) | ||
| Theorem | aomclem7 43031* | Lemma for dfac11 43033. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) | ||
| Theorem | aomclem8 43032* | Lemma for dfac11 43033. Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) | ||
| Theorem | dfac11 43033* |
The right-hand side of this theorem (compare with ac4 10487),
sometimes
known as the "axiom of multiple choice", is a choice
equivalent.
Curiously, this statement cannot be proved without ax-reg 9604, despite
not mentioning the cumulative hierarchy in any way as most consequences
of regularity do.
This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it. A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well-ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))) | ||
| Theorem | kelac1 43034* | Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵:𝑆–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ ∪ 𝐽) & ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Comp) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
| Theorem | kelac2lem 43035 | Lemma for kelac2 43036 and dfac21 43037: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪ 𝑆}}) ∈ Comp) | ||
| Theorem | kelac2 43036* | Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (topGen‘{𝑆, {𝒫 ∪ 𝑆}}))) ∈ Comp) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
| Theorem | dfac21 43037 | Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t‘𝑓) ∈ Comp)) | ||
| Syntax | clfig 43038 | Extend class notation with the class of finitely generated left modules. |
| class LFinGen | ||
| Definition | df-lfig 43039 | Define the class of finitely generated left modules. Finite generation of subspaces can be interpreted using ↾s. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ LFinGen = {𝑤 ∈ LMod ∣ (Base‘𝑤) ∈ ((LSpan‘𝑤) “ (𝒫 (Base‘𝑤) ∩ Fin))} | ||
| Theorem | islmodfg 43040* | Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | ||
| Theorem | islssfg 43041* | Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | ||
| Theorem | islssfg2 43042* | Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) | ||
| Theorem | islssfgi 43043 | Finitely spanned subspaces are finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝑁‘𝐵)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝑋 ∈ LFinGen) | ||
| Theorem | fglmod 43044 | Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) | ||
| Theorem | lsmfgcl 43045 | The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐷 = (𝑊 ↾s 𝐴) & ⊢ 𝐸 = (𝑊 ↾s 𝐵) & ⊢ 𝐹 = (𝑊 ↾s (𝐴 ⊕ 𝐵)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ LFinGen) & ⊢ (𝜑 → 𝐸 ∈ LFinGen) ⇒ ⊢ (𝜑 → 𝐹 ∈ LFinGen) | ||
| Syntax | clnm 43046 | Extend class notation with the class of Noetherian left modules. |
| class LNoeM | ||
| Definition | df-lnm 43047* | A left-module is Noetherian iff it is hereditarily finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | ||
| Theorem | islnm 43048* | Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑀) ⇒ ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) | ||
| Theorem | islnm2 43049* | Property of being a Noetherian left module with finite generation expanded in terms of spans. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑁 = (LSpan‘𝑀) ⇒ ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) | ||
| Theorem | lnmlmod 43050 | A Noetherian left module is a left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | ||
| Theorem | lnmlssfg 43051 | A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (𝑀 ↾s 𝑈) ⇒ ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) | ||
| Theorem | lnmlsslnm 43052 | All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (𝑀 ↾s 𝑈) ⇒ ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) | ||
| Theorem | lnmfg 43053 | A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) | ||
| Theorem | kercvrlsm 43054 | The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ ⊕ = (LSSum‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐹 “ 𝐷) = ran 𝐹) ⇒ ⊢ (𝜑 → (𝐾 ⊕ 𝐷) = 𝐵) | ||
| Theorem | lmhmfgima 43055 | A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑇 ↾s (𝐹 “ 𝐴)) & ⊢ 𝑋 = (𝑆 ↾s 𝐴) & ⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ LFinGen) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) ⇒ ⊢ (𝜑 → 𝑌 ∈ LFinGen) | ||
| Theorem | lnmepi 43056 | Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) | ||
| Theorem | lmhmfgsplit 43057 | If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑈 = (𝑆 ↾s 𝐾) & ⊢ 𝑉 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen) | ||
| Theorem | lmhmlnmsplit 43058 | If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.) |
| ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑈 = (𝑆 ↾s 𝐾) & ⊢ 𝑉 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM) | ||
| Theorem | lnmlmic 43059 | Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) | ||
| Theorem | pwssplit4 43060* | Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐸 = (𝑅 ↑s (𝐴 ∪ 𝐵)) & ⊢ 𝐺 = (Base‘𝐸) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = {𝑦 ∈ 𝐺 ∣ (𝑦 ↾ 𝐴) = (𝐴 × { 0 })} & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ↾ 𝐵)) & ⊢ 𝐶 = (𝑅 ↑s 𝐴) & ⊢ 𝐷 = (𝑅 ↑s 𝐵) & ⊢ 𝐿 = (𝐸 ↾s 𝐾) ⇒ ⊢ ((𝑅 ∈ LMod ∧ (𝐴 ∪ 𝐵) ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐹 ∈ (𝐿 LMIso 𝐷)) | ||
| Theorem | filnm 43061 | Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM) | ||
| Theorem | pwslnmlem0 43062 | Zeroeth powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s ∅) ⇒ ⊢ (𝑊 ∈ LMod → 𝑌 ∈ LNoeM) | ||
| Theorem | pwslnmlem1 43063* | First powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s {𝑖}) ⇒ ⊢ (𝑊 ∈ LNoeM → 𝑌 ∈ LNoeM) | ||
| Theorem | pwslnmlem2 43064 | A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑋 = (𝑊 ↑s 𝐴) & ⊢ 𝑌 = (𝑊 ↑s 𝐵) & ⊢ 𝑍 = (𝑊 ↑s (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑋 ∈ LNoeM) & ⊢ (𝜑 → 𝑌 ∈ LNoeM) ⇒ ⊢ (𝜑 → 𝑍 ∈ LNoeM) | ||
| Theorem | pwslnm 43065 | Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s 𝐼) ⇒ ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
| Theorem | unxpwdom3 43066* | Weaker version of unxpwdom 9601 where a function is required only to be cancellative, not an injection. 𝐷 and 𝐵 are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into 𝐴, each row must hit an element of 𝐵; by column injectivity, each row can be identified in at least one way by the 𝐵 element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015.) MOVABLE |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐷) → (𝑎 + 𝑏) ∈ (𝐴 ∪ 𝐵)) & ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐶) ∧ (𝑏 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷)) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐)) & ⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (𝑎 ∈ 𝐶 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎)) & ⊢ (𝜑 → ¬ 𝐷 ≼ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≼* (𝐷 × 𝐵)) | ||
| Theorem | pwfi2f1o 43067* | The pw2f1o 9089 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) | ||
| Theorem | pwfi2en 43068* | Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) | ||
| Theorem | frlmpwfi 43069 | Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
| ⊢ 𝑅 = (ℤ/nℤ‘2) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | ||
| Theorem | gicabl 43070 | Being Abelian is a group invariant. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel)) | ||
| Theorem | imasgim 43071 | A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) | ||
| Theorem | isnumbasgrplem1 43072 | A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) | ||
| Theorem | harn0 43073 | The Hartogs number of a set is never zero. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → (har‘𝑆) ≠ ∅) | ||
| Theorem | numinfctb 43074 | A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | ||
| Theorem | isnumbasgrplem2 43075 | If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | ||
| Theorem | isnumbasgrplem3 43076 | Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) | ||
| Theorem | isnumbasabl 43077 | A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | ||
| Theorem | isnumbasgrp 43078 | A set is numerable iff it and its Hartogs number can be jointly given the structure of a group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) | ||
| Theorem | dfacbasgrp 43079 | A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) | ||
| Syntax | clnr 43080 | Extend class notation with the class of left Noetherian rings. |
| class LNoeR | ||
| Definition | df-lnr 43081 | A ring is left-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | ||
| Theorem | islnr 43082 | Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) | ||
| Theorem | lnrring 43083 | Left-Noetherian rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ LNoeR → 𝐴 ∈ Ring) | ||
| Theorem | lnrlnm 43084 | Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM) | ||
| Theorem | islnr2 43085* | Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) | ||
| Theorem | islnr3 43086 | Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵))) | ||
| Theorem | lnr2i 43087* | Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) | ||
| Theorem | lpirlnr 43088 | Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) | ||
| Theorem | lnrfrlm 43089 | Finite-dimensional free modules over a Noetherian ring are Noetherian. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
| Theorem | lnrfg 43090 | Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
| ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) | ||
| Theorem | lnrfgtr 43091 | A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
| ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑈 = (LSubSp‘𝑀) & ⊢ 𝑁 = (𝑀 ↾s 𝑃) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃 ∈ 𝑈) → 𝑁 ∈ LFinGen) | ||
| Syntax | cldgis 43092 | The leading ideal sequence used in the Hilbert Basis Theorem. |
| class ldgIdlSeq | ||
| Definition | df-ldgis 43093* | Define a function which carries polynomial ideals to the sequence of coefficient ideals of leading coefficients of degree- 𝑥 elements in the polynomial ideal. The proof that this map is strictly monotone is the core of the Hilbert Basis Theorem hbt 43101. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) | ||
| Theorem | hbtlem1 43094* | Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) | ||
| Theorem | hbtlem2 43095 | Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ 𝑇) | ||
| Theorem | hbtlem7 43096 | Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼):ℕ0⟶𝑇) | ||
| Theorem | hbtlem4 43097 | The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐼)‘𝑌)) | ||
| Theorem | hbtlem3 43098 | The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) | ||
| Theorem | hbtlem5 43099* | The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆‘𝐽)‘𝑥) ⊆ ((𝑆‘𝐼)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
| Theorem | hbtlem6 43100* | There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ LNoeR) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |