| Metamath
Proof Explorer Theorem List (p. 431 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | jm2.27a 43001 | Lemma for jm2.27 43004. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝐷 = (𝐴 Xrm 𝑃)) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝑃)) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝐹 = (𝐴 Xrm 𝑄)) & ⊢ (𝜑 → 𝐸 = (𝐴 Yrm 𝑄)) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝐼 = (𝐺 Xrm 𝑅)) & ⊢ (𝜑 → 𝐻 = (𝐺 Yrm 𝑅)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
| Theorem | jm2.27b 43002 | Lemma for jm2.27 43004. Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐺 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1) & ⊢ (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1) & ⊢ (𝜑 → 𝐺 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1) & ⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) & ⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) & ⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) & ⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) | ||
| Theorem | jm2.27c 43003 | Lemma for jm2.27 43004. Forward direction with substitutions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) & ⊢ 𝐷 = (𝐴 Xrm 𝐵) & ⊢ 𝑄 = (𝐵 · (𝐴 Yrm 𝐵)) & ⊢ 𝐸 = (𝐴 Yrm (2 · 𝑄)) & ⊢ 𝐹 = (𝐴 Xrm (2 · 𝑄)) & ⊢ 𝐺 = (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) & ⊢ 𝐻 = (𝐺 Yrm 𝐵) & ⊢ 𝐼 = (𝐺 Xrm 𝐵) & ⊢ 𝐽 = ((𝐸 / (2 · (𝐶↑2))) − 1) ⇒ ⊢ (𝜑 → (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ 𝐹 ∈ ℕ0) ∧ (𝐺 ∈ ℕ0 ∧ 𝐻 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)) ∧ (𝐽 ∈ ℕ0 ∧ (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ≥‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻 − 𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻 − 𝐵) ∧ 𝐵 ≤ 𝐶)))))) | ||
| Theorem | jm2.27 43004* | Lemma 2.27 of [JonesMatijasevic] p. 697; rmY is a diophantine relation. 0 was excluded from the range of B and the lower limit of G was imposed because the source proof does not seem to work otherwise; quite possible I'm just missing something. The source proof uses both i and I; i has been changed to j to avoid collision. This theorem is basically nothing but substitution instances, all the work is done in jm2.27a 43001 and jm2.27c 43003. Once Diophantine relations have been defined, the content of the theorem is "rmY is Diophantine". (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ∃𝑔 ∈ ℕ0 ∃ℎ ∈ ℕ0 ∃𝑖 ∈ ℕ0 ∃𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ≥‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (ℎ↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔 − 𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (ℎ − 𝐶)) ∧ ((2 · 𝐶) ∥ (ℎ − 𝐵) ∧ 𝐵 ≤ 𝐶))))) | ||
| Theorem | jm2.27dlem1 43005* | Lemma for rmydioph 43010. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ (1...𝐵) ⇒ ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) | ||
| Theorem | jm2.27dlem2 43006 | Lemma for rmydioph 43010. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...;10). (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ (1...𝐵) & ⊢ 𝐶 = (𝐵 + 1) & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐶) | ||
| Theorem | jm2.27dlem3 43007 | Lemma for rmydioph 43010. Infer membership of the endpoint of a range. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ (1...𝐴) | ||
| Theorem | jm2.27dlem4 43008 | Lemma for rmydioph 43010. Infer ℕ-hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 = (𝐴 + 1) ⇒ ⊢ 𝐵 ∈ ℕ | ||
| Theorem | jm2.27dlem5 43009 | Lemma for rmydioph 43010. Used with sselii 3946 to infer membership of midpoints of range; jm2.27dlem2 43006 is deprecated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ 𝐵 = (𝐴 + 1) & ⊢ (1...𝐵) ⊆ (1...𝐶) ⇒ ⊢ (1...𝐴) ⊆ (1...𝐶) | ||
| Theorem | rmydioph 43010 | jm2.27 43004 restated in terms of Diophantine sets. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
| Theorem | rmxdiophlem 43011* | X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))) | ||
| Theorem | rmxdioph 43012 | X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3) | ||
| Theorem | jm3.1lem1 43013 | Lemma for jm3.1 43016. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < 𝐴) | ||
| Theorem | jm3.1lem2 43014 | Lemma for jm3.1 43016. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) | ||
| Theorem | jm3.1lem3 43015 | Lemma for jm3.1 43016. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) ⇒ ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ) | ||
| Theorem | jm3.1 43016 | Diophantine expression for exponentiation. Lemma 3.1 of [JonesMatijasevic] p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) → (𝐾↑𝑁) = (((𝐴 Xrm 𝑁) − ((𝐴 − 𝐾) · (𝐴 Yrm 𝑁))) mod ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))) | ||
| Theorem | expdiophlem1 43017* | Lemma for expdioph 43019. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴↑𝐵)) ↔ ∃𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ≥‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑 − 𝐴) · 𝑒)) − 𝐶)))))))) | ||
| Theorem | expdiophlem2 43018 | Lemma for expdioph 43019. Exponentiation on a restricted domain is Diophantine. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ≥‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3) | ||
| Theorem | expdioph 43019 | The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3) | ||
| Theorem | setindtr 43020* | Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind 9694; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (∃𝑦(Tr 𝑦 ∧ 𝐵 ∈ 𝑦) → 𝐵 ∈ 𝐴)) | ||
| Theorem | setindtrs 43021* | Set induction scheme without Infinity. See comments at setindtr 43020. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝜒) | ||
| Theorem | dford3lem1 43022* | Lemma for dford3 43024. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) | ||
| Theorem | dford3lem2 43023* | Lemma for dford3 43024. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ ((Tr 𝑥 ∧ ∀𝑦 ∈ 𝑥 Tr 𝑦) → 𝑥 ∈ On) | ||
| Theorem | dford3 43024* | Ordinals are precisely the hereditarily transitive classes. Definition 1.2 of [Schloeder] p. 1. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥)) | ||
| Theorem | dford4 43025* | dford3 43024 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (Ord 𝑁 ↔ ∀𝑎∀𝑏∀𝑐((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑎) → (𝑏 ∈ 𝑁 ∧ (𝑐 ∈ 𝑏 → 𝑐 ∈ 𝑎)))) | ||
| Theorem | wopprc 43026 | Unrelated: Wiener pairs treat proper classes symmetrically. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1o ∈ {{{𝐴}, ∅}, {{𝐵}}}) | ||
| Theorem | rpnnen3lem 43027* | Lemma for rpnnen3 43028. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | ||
| Theorem | rpnnen3 43028 | Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ ℝ ≼ 𝒫 ℚ | ||
| Theorem | axac10 43029 | Characterization of choice similar to dffin1-5 10348. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
| ⊢ ( ≈ “ On) = V | ||
| Theorem | harinf 43030 | The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) | ||
| Theorem | wdom2d2 43031* | Deduction for weak dominance by a Cartesian product. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* (𝐵 × 𝐶)) | ||
| Theorem | ttac 43032 | Tarski's theorem about choice: infxpidm 10522 is equivalent to ax-ac 10419. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐)) | ||
| Theorem | pw2f1ocnv 43033* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9053, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴 ∧ ◡𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))))) | ||
| Theorem | pw2f1o2 43034* | Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9053, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴) | ||
| Theorem | pw2f1o2val 43035* | Function value of the pw2f1o2 43034 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) | ||
| Theorem | pw2f1o2val2 43036* | Membership in a mapped set under the pw2f1o2 43034 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ⇒ ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) | ||
| Theorem | limsuc2 43037 | Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) | ||
| Theorem | wepwsolem 43038* | Transfer an ordering on characteristic functions by isomorphism to the power set. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} & ⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝐹 = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) ⇒ ⊢ (𝐴 ∈ V → 𝐹 Isom 𝑈, 𝑇 ((2o ↑m 𝐴), 𝒫 𝐴)) | ||
| Theorem | wepwso 43039* | A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) | ||
| Theorem | dnnumch1 43040* | Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 9990. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) | ||
| Theorem | dnnumch2 43041* | Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) | ||
| Theorem | dnnumch3lem 43042* | Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) | ||
| Theorem | dnnumch3 43043* | Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})):𝐴–1-1→On) | ||
| Theorem | dnwech 43044* | Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) & ⊢ 𝐻 = {〈𝑣, 𝑤〉 ∣ ∩ (◡𝐹 “ {𝑣}) ∈ ∩ (◡𝐹 “ {𝑤})} ⇒ ⊢ (𝜑 → 𝐻 We 𝐴) | ||
| Theorem | fnwe2val 43045* | Lemma for fnwe2 43049. Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} ⇒ ⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) | ||
| Theorem | fnwe2lem1 43046* | Lemma for fnwe2 43049. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) | ||
| Theorem | fnwe2lem2 43047* | Lemma for fnwe2 43049. An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus 𝑇 is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑎 ⊆ 𝐴) & ⊢ (𝜑 → 𝑎 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏) | ||
| Theorem | fnwe2lem3 43048* | Lemma for fnwe2 43049. Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) | ||
| Theorem | fnwe2 43049* | A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 8114 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) & ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐵) ⇒ ⊢ (𝜑 → 𝑇 We 𝐴) | ||
| Theorem | aomclem1 43050* |
Lemma for dfac11 43058. This is the beginning of the proof that
multiple
choice is equivalent to choice. Our goal is to construct, by
transfinite recursion, a well-ordering of (𝑅1‘𝐴). In what
follows, 𝐴 is the index of the rank we wish to
well-order, 𝑧 is
the collection of well-orderings constructed so far, dom 𝑧 is
the
set of ordinal indices of constructed ranks i.e. the next rank to
construct, and 𝑦 is a postulated multiple-choice
function.
Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) ⇒ ⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem2 43051* | Lemma for dfac11 43058. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) | ||
| Theorem | aomclem3 43052* | Lemma for dfac11 43058. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → 𝐸 We (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem4 43053* | Lemma for dfac11 43058. Limit case. Patch together well-orderings constructed so far using fnwe2 43049 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → dom 𝑧 = ∪ dom 𝑧) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) ⇒ ⊢ (𝜑 → 𝐹 We (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem5 43054* | Lemma for dfac11 43058. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ (𝜑 → dom 𝑧 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → 𝐺 We (𝑅1‘dom 𝑧)) | ||
| Theorem | aomclem6 43055* | Lemma for dfac11 43058. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) | ||
| Theorem | aomclem7 43056* | Lemma for dfac11 43058. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} & ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) & ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) & ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} & ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} & ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) & ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) | ||
| Theorem | aomclem8 43057* | Lemma for dfac11 43058. Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) ⇒ ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) | ||
| Theorem | dfac11 43058* |
The right-hand side of this theorem (compare with ac4 10435),
sometimes
known as the "axiom of multiple choice", is a choice
equivalent.
Curiously, this statement cannot be proved without ax-reg 9552, despite
not mentioning the cumulative hierarchy in any way as most consequences
of regularity do.
This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it. A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well-ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))) | ||
| Theorem | kelac1 43059* | Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵:𝑆–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ ∪ 𝐽) & ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Comp) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
| Theorem | kelac2lem 43060 | Lemma for kelac2 43061 and dfac21 43062: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪ 𝑆}}) ∈ Comp) | ||
| Theorem | kelac2 43061* | Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (topGen‘{𝑆, {𝒫 ∪ 𝑆}}))) ∈ Comp) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
| Theorem | dfac21 43062 | Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.) |
| ⊢ (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t‘𝑓) ∈ Comp)) | ||
| Syntax | clfig 43063 | Extend class notation with the class of finitely generated left modules. |
| class LFinGen | ||
| Definition | df-lfig 43064 | Define the class of finitely generated left modules. Finite generation of subspaces can be interpreted using ↾s. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ LFinGen = {𝑤 ∈ LMod ∣ (Base‘𝑤) ∈ ((LSpan‘𝑤) “ (𝒫 (Base‘𝑤) ∩ Fin))} | ||
| Theorem | islmodfg 43065* | Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | ||
| Theorem | islssfg 43066* | Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | ||
| Theorem | islssfg2 43067* | Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) | ||
| Theorem | islssfgi 43068 | Finitely spanned subspaces are finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝑁‘𝐵)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin) → 𝑋 ∈ LFinGen) | ||
| Theorem | fglmod 43069 | Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) | ||
| Theorem | lsmfgcl 43070 | The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐷 = (𝑊 ↾s 𝐴) & ⊢ 𝐸 = (𝑊 ↾s 𝐵) & ⊢ 𝐹 = (𝑊 ↾s (𝐴 ⊕ 𝐵)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ LFinGen) & ⊢ (𝜑 → 𝐸 ∈ LFinGen) ⇒ ⊢ (𝜑 → 𝐹 ∈ LFinGen) | ||
| Syntax | clnm 43071 | Extend class notation with the class of Noetherian left modules. |
| class LNoeM | ||
| Definition | df-lnm 43072* | A left-module is Noetherian iff it is hereditarily finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | ||
| Theorem | islnm 43073* | Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑀) ⇒ ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) | ||
| Theorem | islnm2 43074* | Property of being a Noetherian left module with finite generation expanded in terms of spans. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑁 = (LSpan‘𝑀) ⇒ ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) | ||
| Theorem | lnmlmod 43075 | A Noetherian left module is a left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | ||
| Theorem | lnmlssfg 43076 | A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (𝑀 ↾s 𝑈) ⇒ ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LFinGen) | ||
| Theorem | lnmlsslnm 43077 | All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (𝑀 ↾s 𝑈) ⇒ ⊢ ((𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆) → 𝑅 ∈ LNoeM) | ||
| Theorem | lnmfg 43078 | A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) | ||
| Theorem | kercvrlsm 43079 | The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ ⊕ = (LSSum‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → (𝐹 “ 𝐷) = ran 𝐹) ⇒ ⊢ (𝜑 → (𝐾 ⊕ 𝐷) = 𝐵) | ||
| Theorem | lmhmfgima 43080 | A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑇 ↾s (𝐹 “ 𝐴)) & ⊢ 𝑋 = (𝑆 ↾s 𝐴) & ⊢ 𝑈 = (LSubSp‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ LFinGen) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) ⇒ ⊢ (𝜑 → 𝑌 ∈ LFinGen) | ||
| Theorem | lnmepi 43081 | Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) | ||
| Theorem | lmhmfgsplit 43082 | If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑈 = (𝑆 ↾s 𝐾) & ⊢ 𝑉 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen) → 𝑆 ∈ LFinGen) | ||
| Theorem | lmhmlnmsplit 43083 | If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.) |
| ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑈 = (𝑆 ↾s 𝐾) & ⊢ 𝑉 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM) | ||
| Theorem | lnmlmic 43084 | Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) | ||
| Theorem | pwssplit4 43085* | Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐸 = (𝑅 ↑s (𝐴 ∪ 𝐵)) & ⊢ 𝐺 = (Base‘𝐸) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = {𝑦 ∈ 𝐺 ∣ (𝑦 ↾ 𝐴) = (𝐴 × { 0 })} & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ↾ 𝐵)) & ⊢ 𝐶 = (𝑅 ↑s 𝐴) & ⊢ 𝐷 = (𝑅 ↑s 𝐵) & ⊢ 𝐿 = (𝐸 ↾s 𝐾) ⇒ ⊢ ((𝑅 ∈ LMod ∧ (𝐴 ∪ 𝐵) ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐹 ∈ (𝐿 LMIso 𝐷)) | ||
| Theorem | filnm 43086 | Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM) | ||
| Theorem | pwslnmlem0 43087 | Zeroeth powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s ∅) ⇒ ⊢ (𝑊 ∈ LMod → 𝑌 ∈ LNoeM) | ||
| Theorem | pwslnmlem1 43088* | First powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s {𝑖}) ⇒ ⊢ (𝑊 ∈ LNoeM → 𝑌 ∈ LNoeM) | ||
| Theorem | pwslnmlem2 43089 | A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑋 = (𝑊 ↑s 𝐴) & ⊢ 𝑌 = (𝑊 ↑s 𝐵) & ⊢ 𝑍 = (𝑊 ↑s (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑋 ∈ LNoeM) & ⊢ (𝜑 → 𝑌 ∈ LNoeM) ⇒ ⊢ (𝜑 → 𝑍 ∈ LNoeM) | ||
| Theorem | pwslnm 43090 | Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s 𝐼) ⇒ ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
| Theorem | unxpwdom3 43091* | Weaker version of unxpwdom 9549 where a function is required only to be cancellative, not an injection. 𝐷 and 𝐵 are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into 𝐴, each row must hit an element of 𝐵; by column injectivity, each row can be identified in at least one way by the 𝐵 element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015.) MOVABLE |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐷) → (𝑎 + 𝑏) ∈ (𝐴 ∪ 𝐵)) & ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐶) ∧ (𝑏 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷)) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐)) & ⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (𝑎 ∈ 𝐶 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎)) & ⊢ (𝜑 → ¬ 𝐷 ≼ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≼* (𝐷 × 𝐵)) | ||
| Theorem | pwfi2f1o 43092* | The pw2f1o 9051 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) | ||
| Theorem | pwfi2en 43093* | Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) | ||
| Theorem | frlmpwfi 43094 | Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
| ⊢ 𝑅 = (ℤ/nℤ‘2) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | ||
| Theorem | gicabl 43095 | Being Abelian is a group invariant. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel)) | ||
| Theorem | imasgim 43096 | A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) | ||
| Theorem | isnumbasgrplem1 43097 | A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) | ||
| Theorem | harn0 43098 | The Hartogs number of a set is never zero. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → (har‘𝑆) ≠ ∅) | ||
| Theorem | numinfctb 43099 | A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | ||
| Theorem | isnumbasgrplem2 43100 | If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |