Detailed syntax breakdown of Definition df-pin
| Step | Hyp | Ref
| Expression |
| 1 | | cpin 25037 |
. 2
class
πn |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | vp |
. . 3
setvar 𝑝 |
| 4 | | ctop 22899 |
. . 3
class
Top |
| 5 | 2 | cv 1539 |
. . . 4
class 𝑗 |
| 6 | 5 | cuni 4907 |
. . 3
class ∪ 𝑗 |
| 7 | | vn |
. . . 4
setvar 𝑛 |
| 8 | | cn0 12526 |
. . . 4
class
ℕ0 |
| 9 | 7 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 10 | 3 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 11 | | comn 25035 |
. . . . . . . 8
class
Ω𝑛 |
| 12 | 5, 10, 11 | co 7431 |
. . . . . . 7
class (𝑗 Ω𝑛
𝑝) |
| 13 | 9, 12 | cfv 6561 |
. . . . . 6
class ((𝑗 Ω𝑛
𝑝)‘𝑛) |
| 14 | | c1st 8012 |
. . . . . 6
class
1st |
| 15 | 13, 14 | cfv 6561 |
. . . . 5
class
(1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) |
| 16 | | cc0 11155 |
. . . . . . 7
class
0 |
| 17 | 9, 16 | wceq 1540 |
. . . . . 6
wff 𝑛 = 0 |
| 18 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 20 | 16, 19 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘0) |
| 21 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 22 | 21 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 23 | 20, 22 | wceq 1540 |
. . . . . . . . 9
wff (𝑓‘0) = 𝑥 |
| 24 | | c1 11156 |
. . . . . . . . . . 11
class
1 |
| 25 | 24, 19 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘1) |
| 26 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 27 | 26 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 28 | 25, 27 | wceq 1540 |
. . . . . . . . 9
wff (𝑓‘1) = 𝑦 |
| 29 | 23, 28 | wa 395 |
. . . . . . . 8
wff ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
| 30 | | cii 24901 |
. . . . . . . . 9
class
II |
| 31 | | ccn 23232 |
. . . . . . . . 9
class
Cn |
| 32 | 30, 5, 31 | co 7431 |
. . . . . . . 8
class (II Cn
𝑗) |
| 33 | 29, 18, 32 | wrex 3070 |
. . . . . . 7
wff
∃𝑓 ∈ (II
Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
| 34 | 33, 21, 26 | copab 5205 |
. . . . . 6
class
{〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |
| 35 | | cmin 11492 |
. . . . . . . . . . 11
class
− |
| 36 | 9, 24, 35 | co 7431 |
. . . . . . . . . 10
class (𝑛 − 1) |
| 37 | 36, 12 | cfv 6561 |
. . . . . . . . 9
class ((𝑗 Ω𝑛
𝑝)‘(𝑛 − 1)) |
| 38 | 37, 14 | cfv 6561 |
. . . . . . . 8
class
(1st ‘((𝑗 Ω𝑛 𝑝)‘(𝑛 − 1))) |
| 39 | | ctopn 17466 |
. . . . . . . 8
class
TopOpen |
| 40 | 38, 39 | cfv 6561 |
. . . . . . 7
class
(TopOpen‘(1st ‘((𝑗 Ω𝑛 𝑝)‘(𝑛 − 1)))) |
| 41 | | cphtpc 25001 |
. . . . . . 7
class
≃ph |
| 42 | 40, 41 | cfv 6561 |
. . . . . 6
class (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 − 1))))) |
| 43 | 17, 34, 42 | cif 4525 |
. . . . 5
class if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 −
1)))))) |
| 44 | | cqus 17550 |
. . . . 5
class
/s |
| 45 | 15, 43, 44 | co 7431 |
. . . 4
class
((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 −
1))))))) |
| 46 | 7, 8, 45 | cmpt 5225 |
. . 3
class (𝑛 ∈ ℕ0
↦ ((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 −
1)))))))) |
| 47 | 2, 3, 4, 6, 46 | cmpo 7433 |
. 2
class (𝑗 ∈ Top, 𝑝 ∈ ∪ 𝑗 ↦ (𝑛 ∈ ℕ0 ↦
((1st ‘((𝑗
Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 −
1))))))))) |
| 48 | 1, 47 | wceq 1540 |
1
wff
πn = (𝑗
∈ Top, 𝑝 ∈ ∪ 𝑗
↦ (𝑛 ∈
ℕ0 ↦ ((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 −
1))))))))) |