| Metamath
Proof Explorer Theorem List (p. 248 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30899) |
(30900-32422) |
(32423-49669) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | uniretop 24701 | The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
| ⊢ ℝ = ∪ (topGen‘ran (,)) | ||
| Theorem | retopon 24702 | The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | ||
| Theorem | retps 24703 | The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.) |
| ⊢ 𝐾 = {〈(Base‘ndx), ℝ〉, 〈(TopSet‘ndx), (topGen‘ran (,))〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | iooretop 24704 | Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | ||
| Theorem | icccld 24705 | Closed intervals are closed sets of the standard topology on ℝ. (Contributed by FL, 14-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | icopnfcld 24706 | Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | iocmnfcld 24707 | Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | qdensere 24708 | ℚ is dense in the standard topology on ℝ. (Contributed by NM, 1-Mar-2007.) |
| ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | ||
| Theorem | cnmetdval 24709 | Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | cnmet 24710 | The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
| ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | ||
| Theorem | cnxmet 24711 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | ||
| Theorem | cnbl0 24712 | Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) | ||
| Theorem | cnblcld 24713* | Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) | ||
| Theorem | cnfldms 24714 | The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ MetSp | ||
| Theorem | cnfldxms 24715 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ ∞MetSp | ||
| Theorem | cnfldtps 24716 | The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ ℂfld ∈ TopSp | ||
| Theorem | cnfldnm 24717 | The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ abs = (norm‘ℂfld) | ||
| Theorem | cnngp 24718 | The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmGrp | ||
| Theorem | cnnrg 24719 | The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ ℂfld ∈ NrmRing | ||
| Theorem | cnfldtopn 24720 | The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | ||
| Theorem | cnfldtopon 24721 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ (TopOn‘ℂ) | ||
| Theorem | cnfldtop 24722 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | cnfldhaus 24723 | The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Haus | ||
| Theorem | unicntop 24724 | The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ = ∪ (TopOpen‘ℂfld) | ||
| Theorem | cnopn 24725 | The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ℂ ∈ (TopOpen‘ℂfld) | ||
| Theorem | cnn0opn 24726 | The set of nonzero complex numbers is open with respect to the standard topology on complex numbers. (Contributed by SN, 7-Oct-2025.) |
| ⊢ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld) | ||
| Theorem | zringnrg 24727 | The ring of integers is a normed ring. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ NrmRing | ||
| Theorem | remetdval 24728 | Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | remet 24729 | The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (Met‘ℝ) | ||
| Theorem | rexmet 24730 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ) | ||
| Theorem | bl2ioo 24731 | A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | ||
| Theorem | ioo2bl 24732 | An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) | ||
| Theorem | ioo2blex 24733 | An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) | ||
| Theorem | blssioo 24734 | The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran (,) | ||
| Theorem | tgioo 24735 | The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| Theorem | qdensere2 24736 | ℚ is dense in ℝ. (Contributed by NM, 24-Aug-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((cls‘𝐽)‘ℚ) = ℝ | ||
| Theorem | blcvx 24737 | An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅) ⇒ ⊢ (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆) | ||
| Theorem | rehaus 24738 | The standard topology on the reals is Hausdorff. (Contributed by NM, 8-Mar-2007.) |
| ⊢ (topGen‘ran (,)) ∈ Haus | ||
| Theorem | tgqioo 24739 | The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ 𝑄 = (topGen‘((,) “ (ℚ × ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 | ||
| Theorem | re2ndc 24740 | The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (topGen‘ran (,)) ∈ 2ndω | ||
| Theorem | resubmet 24741 | The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) | ||
| Theorem | tgioo2 24742 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) | ||
| Theorem | rerest 24743 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
| Theorem | tgioo4 24744 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
| Theorem | tgioo3 24745 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Thierry Arnoux, 3-Jul-2019.) |
| ⊢ 𝐽 = (TopOpen‘ℝfld) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| Theorem | xrtgioo 24746 | The topology on the extended reals coincides with the standard topology on the reals, when restricted to ℝ. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| Theorem | xrrest 24747 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = (ordTop‘ ≤ ) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝑋 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
| Theorem | xrrest2 24748 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (ordTop‘ ≤ ) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑋 ↾t 𝐴)) | ||
| Theorem | xrsxmet 24749 | The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ*) | ||
| Theorem | xrsdsre 24750 | The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | ||
| Theorem | xrsblre 24751 | Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) | ||
| Theorem | xrsmopn 24752 | The metric on the extended reals generates a topology, but this does not match the order topology on ℝ*; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (ordTop‘ ≤ ) ⊆ 𝐽 | ||
| Theorem | zcld 24753 | The integers are a closed set in the topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
| Theorem | recld2 24754 | The real numbers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℝ ∈ (Clsd‘𝐽) | ||
| Theorem | zcld2 24755 | The integers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
| Theorem | zdis 24756 | The integers are a discrete set in the topology on ℂ. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℤ) = 𝒫 ℤ | ||
| Theorem | sszcld 24757 | Every subset of the integers are closed in the topology on ℂ. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐴 ⊆ ℤ → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | reperflem 24758* | A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆) & ⊢ 𝑆 ⊆ ℂ ⇒ ⊢ (𝐽 ↾t 𝑆) ∈ Perf | ||
| Theorem | reperf 24759 | The real numbers are a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℝ) ∈ Perf | ||
| Theorem | cnperf 24760 | The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Perf | ||
| Theorem | iccntr 24761 | The interior of a closed interval in the standard topology on ℝ is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | ||
| Theorem | icccmplem1 24762* | Lemma for icccmp 24765. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) | ||
| Theorem | icccmplem2 24763* | Lemma for icccmp 24765. (Contributed by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉) & ⊢ 𝐺 = sup(𝑆, ℝ, < ) & ⊢ 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
| Theorem | icccmplem3 24764* | Lemma for icccmp 24765. (Contributed by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
| Theorem | icccmp 24765 | A closed interval in ℝ is compact. (Contributed by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) | ||
| Theorem | reconnlem1 24766 | Lemma for reconn 24768. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴) | ||
| Theorem | reconnlem2 24767* | Lemma for reconn 24768. (Contributed by Jeff Hankins, 17-Aug-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → 𝑉 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∩ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝑉 ∩ 𝐴)) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (ℝ ∖ 𝐴)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ⇒ ⊢ (𝜑 → ¬ 𝐴 ⊆ (𝑈 ∪ 𝑉)) | ||
| Theorem | reconn 24768* | A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) | ||
| Theorem | retopconn 24769 | Corollary of reconn 24768. The set of real numbers is connected. (Contributed by Jeff Hankins, 17-Aug-2009.) |
| ⊢ (topGen‘ran (,)) ∈ Conn | ||
| Theorem | iccconn 24770 | A closed interval is connected. (Contributed by Jeff Hankins, 17-Aug-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn) | ||
| Theorem | opnreen 24771 | Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.) |
| ⊢ ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ) | ||
| Theorem | rectbntr0 24772 | A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) | ||
| Theorem | xrge0gsumle 24773 | A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐶)) ≤ (𝐺 Σg (𝐹 ↾ 𝐵))) | ||
| Theorem | xrge0tsms 24774* | Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Proof shortened by AV, 26-Jul-2019.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑠))), ℝ*, < ) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {𝑆}) | ||
| Theorem | xrge0tsms2 24775 | Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [0, +∞]; a similar theorem is not true for ℝ* or ℝ or [0, +∞). It is true for ℕ0 ∪ {+∞}, however, or more generally any additive submonoid of [0, +∞) with +∞ adjoined. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) | ||
| Theorem | metdcnlem 24776 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑍 ∈ 𝑋) & ⊢ (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2)) & ⊢ (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2)) ⇒ ⊢ (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅) | ||
| Theorem | xmetdcn2 24777 | The metric function of an extended metric space is always continuous in the topology generated by it. In this variation of xmetdcn 24778 we use the metric topology instead of the order topology on ℝ*, which makes the theorem a bit stronger. Since +∞ is an isolated point in the metric topology, this is saying that for any points 𝐴, 𝐵 which are an infinite distance apart, there is a product neighborhood around 〈𝐴, 𝐵〉 such that 𝑑(𝑎, 𝑏) = +∞ for any 𝑎 near 𝐴 and 𝑏 near 𝐵, i.e., the distance function is locally constant +∞. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | xmetdcn 24778 | The metric function of an extended metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (ordTop‘ ≤ ) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | metdcn2 24779 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | metdcn 24780 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | msdcn 24781 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) & ⊢ 𝐽 = (TopOpen‘𝑀) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | cnmpt1ds 24782* | Continuity of the metric function; analogue of cnmpt12f 23604 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ MetSp) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵)) ∈ (𝐾 Cn 𝑅)) | ||
| Theorem | cnmpt2ds 24783* | Continuity of the metric function; analogue of cnmpt22f 23613 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ MetSp) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐷𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅)) | ||
| Theorem | nmcn 24784 | The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | ngnmcncn 24785 | The norm of a normed group is a continuous function to ℂ. (Contributed by NM, 12-Aug-2007.) (Revised by AV, 17-Oct-2021.) |
| ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | abscn 24786 | The absolute value function on complex numbers is continuous. (Contributed by NM, 22-Aug-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ abs ∈ (𝐽 Cn 𝐾) | ||
| Theorem | metdsval 24787* | Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Revised by AV, 30-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) | ||
| Theorem | metdsf 24788* | The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) | ||
| Theorem | metdsge 24789* | The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅)) | ||
| Theorem | metds0 24790* | If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) | ||
| Theorem | metdstri 24791* | A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol 𝑑 denotes the point-point and point-set distance functions, this theorem would be written 𝑑(𝑎, 𝑆) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑆). (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) | ||
| Theorem | metdsle 24792* | The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metdsre 24793* | The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) | ||
| Theorem | metdseq0 24794* | The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆))) | ||
| Theorem | metdscnlem 24795* | Lemma for metdscn 24796. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) | ||
| Theorem | metdscn 24796* | The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | metdscn2 24797* | The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | metnrmlem1a 24798* | Lemma for metnrm 24802. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 < (𝐹‘𝐴) ∧ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈ ℝ+)) | ||
| Theorem | metnrmlem1 24799* | Lemma for metnrm 24802. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metnrmlem2 24800* | Lemma for metnrm 24802. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |