![]() |
Metamath
Proof Explorer Theorem List (p. 248 of 444) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28374) |
![]() (28375-29897) |
![]() (29898-44365) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | abelth2 24701* | Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((0[,]1)–cn→ℂ)) | ||
Theorem | efcn 24702 | The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) |
⊢ exp ∈ (ℂ–cn→ℂ) | ||
Theorem | sincn 24703 | Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
⊢ sin ∈ (ℂ–cn→ℂ) | ||
Theorem | coscn 24704 | Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
⊢ cos ∈ (ℂ–cn→ℂ) | ||
Theorem | reeff1olem 24705* | Lemma for reeff1o 24706. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) | ||
Theorem | reeff1o 24706 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | ||
Theorem | reefiso 24707 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
⊢ (exp ↾ ℝ) Isom < , < (ℝ, ℝ+) | ||
Theorem | efcvx 24708 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵)))) | ||
Theorem | reefgim 24709 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | ||
Theorem | pilem1 24710 | Lemma for pire 24715, pigt2lt4 24713 and sinpi 24714. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0)) | ||
Theorem | pilem2 24711 | Lemma for pire 24715, pigt2lt4 24713 and sinpi 24714. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ (2(,)4)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (sin‘𝐴) = 0) & ⊢ (𝜑 → (sin‘𝐵) = 0) ⇒ ⊢ (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵) | ||
Theorem | pilem3 24712 | Lemma for pire 24715, pigt2lt4 24713 and sinpi 24714. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.) |
⊢ (π ∈ (2(,)4) ∧ (sin‘π) = 0) | ||
Theorem | pigt2lt4 24713 | π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ (2 < π ∧ π < 4) | ||
Theorem | sinpi 24714 | The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘π) = 0 | ||
Theorem | pire 24715 | π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ π ∈ ℝ | ||
Theorem | picn 24716 | π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ π ∈ ℂ | ||
Theorem | pipos 24717 | π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ 0 < π | ||
Theorem | pirp 24718 | π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ π ∈ ℝ+ | ||
Theorem | negpicn 24719 | -π is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -π ∈ ℂ | ||
Theorem | sinhalfpilem 24720 | Lemma for sinhalfpi 24725 and coshalfpi 24726. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0) | ||
Theorem | halfpire 24721 | π / 2 is real. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (π / 2) ∈ ℝ | ||
Theorem | neghalfpire 24722 | -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ | ||
Theorem | neghalfpirx 24723 | -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ* | ||
Theorem | pidiv2halves 24724 | Adding π / 2 to itself gives π. See 2halves 11702. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ ((π / 2) + (π / 2)) = π | ||
Theorem | sinhalfpi 24725 | The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(π / 2)) = 1 | ||
Theorem | coshalfpi 24726 | The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(π / 2)) = 0 | ||
Theorem | cosneghalfpi 24727 | The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (cos‘-(π / 2)) = 0 | ||
Theorem | efhalfpi 24728 | The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (π / 2))) = i | ||
Theorem | cospi 24729 | The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘π) = -1 | ||
Theorem | efipi 24730 | The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (exp‘(i · π)) = -1 | ||
Theorem | eulerid 24731 | Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ ((exp‘(i · π)) + 1) = 0 | ||
Theorem | sin2pi 24732 | The sine of 2π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(2 · π)) = 0 | ||
Theorem | cos2pi 24733 | The cosine of 2π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(2 · π)) = 1 | ||
Theorem | ef2pi 24734 | The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (2 · π))) = 1 | ||
Theorem | ef2kpi 24735 | If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) | ||
Theorem | efper 24736 | The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴)) | ||
Theorem | sinperlem 24737 | Lemma for sinper 24738 and cosper 24739. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) | ||
Theorem | sinper 24738 | The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴)) | ||
Theorem | cosper 24739 | The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴)) | ||
Theorem | sin2kpi 24740 | If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0) | ||
Theorem | cos2kpi 24741 | If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | ||
Theorem | sin2pim 24742 | Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴)) | ||
Theorem | cos2pim 24743 | Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinmpi 24744 | Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | ||
Theorem | cosmpi 24745 | Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) | ||
Theorem | sinppi 24746 | Sine of a number plus π. (Contributed by NM, 10-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴)) | ||
Theorem | cosppi 24747 | Cosine of a number plus π. (Contributed by NM, 18-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴)) | ||
Theorem | efimpi 24748 | The exponential function at i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴))) | ||
Theorem | sinhalfpip 24749 | The sine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinhalfpim 24750 | The sine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | coshalfpip 24751 | The cosine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) + 𝐴)) = -(sin‘𝐴)) | ||
Theorem | coshalfpim 24752 | The cosine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) | ||
Theorem | ptolemy 24753 | Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 15346, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶)))) | ||
Theorem | sincosq1lem 24754 | Lemma for sincosq1sgn 24755. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) | ||
Theorem | sincosq1sgn 24755 | The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) | ||
Theorem | sincosq2sgn 24756 | The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq3sgn 24757 | The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq4sgn 24758 | The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴))) | ||
Theorem | coseq00topi 24759 | Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | ||
Theorem | coseq0negpitopi 24760 | Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)})) | ||
Theorem | tanrpcl 24761 | Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) ∈ ℝ+) | ||
Theorem | tangtx 24762 | The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴)) | ||
Theorem | tanabsge 24763 | The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴))) | ||
Theorem | sinq12gt0 24764 | The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴)) | ||
Theorem | sinq12ge0 24765 | The sine of a number between 0 and π is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴)) | ||
Theorem | sinq34lt0t 24766 | The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) | ||
Theorem | cosq14gt0 24767 | The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) | ||
Theorem | cosq14ge0 24768 | The cosine of a number between -π / 2 and π / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘𝐴)) | ||
Theorem | sincosq1eq 24769 | Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) | ||
Theorem | sincos4thpi 24770 | The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | ||
Theorem | tan4thpi 24771 | The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (tan‘(π / 4)) = 1 | ||
Theorem | sincos6thpi 24772 | The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) Replace OLD theorem. (Revised by Wolf Lammen, 24-Sep-2020.) |
⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | ||
Theorem | sincos3rdpi 24773 | The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) | ||
Theorem | pigt3 24774 | π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ 3 < π | ||
Theorem | pige3 24775 | π is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ 3 ≤ π | ||
Theorem | pige3ALT 24776 | Alternate proof of pige3 24775. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2π. We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 3 ≤ π | ||
Theorem | abssinper 24777 | The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴))) | ||
Theorem | sinkpi 24778 | The sine of an integer multiple of π is 0. (Contributed by NM, 11-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · π)) = 0) | ||
Theorem | coskpi 24779 | The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) | ||
Theorem | sineq0 24780 | A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ)) | ||
Theorem | coseq1 24781 | A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) | ||
Theorem | efeq1 24782 | A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ)) | ||
Theorem | cosne0 24783 | The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0) | ||
Theorem | cosordlem 24784 | Lemma for cosord 24785. (Contributed by Mario Carneiro, 10-May-2014.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (cos‘𝐵) < (cos‘𝐴)) | ||
Theorem | cosord 24785 | Cosine is decreasing over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴))) | ||
Theorem | cos11 24786 | Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | ||
Theorem | sinord 24787 | Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) | ||
Theorem | recosf1o 24788 | The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) | ||
Theorem | resinf1o 24789 | The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) | ||
Theorem | tanord1 24790 | The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 24791.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.) |
⊢ ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanord 24791 | The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanregt0 24792 | The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴))) | ||
Theorem | negpitopissre 24793 | The interval (-π(,]π) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (-π(,]π) ⊆ ℝ | ||
Theorem | efgh 24794* | The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) | ||
Theorem | efif1olem1 24795* | Lemma for efif1o 24799. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) | ||
Theorem | efif1olem2 24796* | Lemma for efif1o 24799. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) | ||
Theorem | efif1olem3 24797* | Lemma for efif1o 24799. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) | ||
Theorem | efif1olem4 24798* | The exponential function of an imaginary number maps any interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) & ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) & ⊢ 𝑆 = (sin ↾ (-(π / 2)[,](π / 2))) ⇒ ⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐶) | ||
Theorem | efif1o 24799* | The exponential function of an imaginary number maps any open-below, closed-above interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ (𝐴 ∈ ℝ → 𝐹:𝐷–1-1-onto→𝐶) | ||
Theorem | efifo 24800* | The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹:ℝ–onto→𝐶 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |