| Metamath
Proof Explorer Theorem List (p. 248 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | zringnrg 24701 | The ring of integers is a normed ring. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ NrmRing | ||
| Theorem | remetdval 24702 | Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | remet 24703 | The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (Met‘ℝ) | ||
| Theorem | rexmet 24704 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ) | ||
| Theorem | bl2ioo 24705 | A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | ||
| Theorem | ioo2bl 24706 | An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) | ||
| Theorem | ioo2blex 24707 | An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) | ||
| Theorem | blssioo 24708 | The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran (,) | ||
| Theorem | tgioo 24709 | The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| Theorem | qdensere2 24710 | ℚ is dense in ℝ. (Contributed by NM, 24-Aug-2007.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((cls‘𝐽)‘ℚ) = ℝ | ||
| Theorem | blcvx 24711 | An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅) ⇒ ⊢ (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆) | ||
| Theorem | rehaus 24712 | The standard topology on the reals is Hausdorff. (Contributed by NM, 8-Mar-2007.) |
| ⊢ (topGen‘ran (,)) ∈ Haus | ||
| Theorem | tgqioo 24713 | The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ 𝑄 = (topGen‘((,) “ (ℚ × ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 | ||
| Theorem | re2ndc 24714 | The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (topGen‘ran (,)) ∈ 2ndω | ||
| Theorem | resubmet 24715 | The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) | ||
| Theorem | tgioo2 24716 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) | ||
| Theorem | rerest 24717 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
| Theorem | tgioo4 24718 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
| Theorem | tgioo3 24719 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Thierry Arnoux, 3-Jul-2019.) |
| ⊢ 𝐽 = (TopOpen‘ℝfld) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| Theorem | xrtgioo 24720 | The topology on the extended reals coincides with the standard topology on the reals, when restricted to ℝ. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
| Theorem | xrrest 24721 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = (ordTop‘ ≤ ) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝑋 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
| Theorem | xrrest2 24722 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (ordTop‘ ≤ ) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑋 ↾t 𝐴)) | ||
| Theorem | xrsxmet 24723 | The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ*) | ||
| Theorem | xrsdsre 24724 | The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | ||
| Theorem | xrsblre 24725 | Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) | ||
| Theorem | xrsmopn 24726 | The metric on the extended reals generates a topology, but this does not match the order topology on ℝ*; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (ordTop‘ ≤ ) ⊆ 𝐽 | ||
| Theorem | zcld 24727 | The integers are a closed set in the topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
| Theorem | recld2 24728 | The real numbers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℝ ∈ (Clsd‘𝐽) | ||
| Theorem | zcld2 24729 | The integers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
| Theorem | zdis 24730 | The integers are a discrete set in the topology on ℂ. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℤ) = 𝒫 ℤ | ||
| Theorem | sszcld 24731 | Every subset of the integers are closed in the topology on ℂ. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐴 ⊆ ℤ → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | reperflem 24732* | A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆) & ⊢ 𝑆 ⊆ ℂ ⇒ ⊢ (𝐽 ↾t 𝑆) ∈ Perf | ||
| Theorem | reperf 24733 | The real numbers are a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℝ) ∈ Perf | ||
| Theorem | cnperf 24734 | The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Perf | ||
| Theorem | iccntr 24735 | The interior of a closed interval in the standard topology on ℝ is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | ||
| Theorem | icccmplem1 24736* | Lemma for icccmp 24739. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) | ||
| Theorem | icccmplem2 24737* | Lemma for icccmp 24739. (Contributed by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉) & ⊢ 𝐺 = sup(𝑆, ℝ, < ) & ⊢ 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
| Theorem | icccmplem3 24738* | Lemma for icccmp 24739. (Contributed by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
| Theorem | icccmp 24739 | A closed interval in ℝ is compact. (Contributed by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) | ||
| Theorem | reconnlem1 24740 | Lemma for reconn 24742. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴) | ||
| Theorem | reconnlem2 24741* | Lemma for reconn 24742. (Contributed by Jeff Hankins, 17-Aug-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → 𝑉 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∩ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝑉 ∩ 𝐴)) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (ℝ ∖ 𝐴)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ⇒ ⊢ (𝜑 → ¬ 𝐴 ⊆ (𝑈 ∪ 𝑉)) | ||
| Theorem | reconn 24742* | A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) | ||
| Theorem | retopconn 24743 | Corollary of reconn 24742. The set of real numbers is connected. (Contributed by Jeff Hankins, 17-Aug-2009.) |
| ⊢ (topGen‘ran (,)) ∈ Conn | ||
| Theorem | iccconn 24744 | A closed interval is connected. (Contributed by Jeff Hankins, 17-Aug-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn) | ||
| Theorem | opnreen 24745 | Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.) |
| ⊢ ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ) | ||
| Theorem | rectbntr0 24746 | A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) | ||
| Theorem | xrge0gsumle 24747 | A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐶)) ≤ (𝐺 Σg (𝐹 ↾ 𝐵))) | ||
| Theorem | xrge0tsms 24748* | Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Proof shortened by AV, 26-Jul-2019.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑠))), ℝ*, < ) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {𝑆}) | ||
| Theorem | xrge0tsms2 24749 | Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [0, +∞]; a similar theorem is not true for ℝ* or ℝ or [0, +∞). It is true for ℕ0 ∪ {+∞}, however, or more generally any additive submonoid of [0, +∞) with +∞ adjoined. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) | ||
| Theorem | metdcnlem 24750 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑍 ∈ 𝑋) & ⊢ (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2)) & ⊢ (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2)) ⇒ ⊢ (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅) | ||
| Theorem | xmetdcn2 24751 | The metric function of an extended metric space is always continuous in the topology generated by it. In this variation of xmetdcn 24752 we use the metric topology instead of the order topology on ℝ*, which makes the theorem a bit stronger. Since +∞ is an isolated point in the metric topology, this is saying that for any points 𝐴, 𝐵 which are an infinite distance apart, there is a product neighborhood around 〈𝐴, 𝐵〉 such that 𝑑(𝑎, 𝑏) = +∞ for any 𝑎 near 𝐴 and 𝑏 near 𝐵, i.e., the distance function is locally constant +∞. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | xmetdcn 24752 | The metric function of an extended metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (ordTop‘ ≤ ) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | metdcn2 24753 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | metdcn 24754 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | msdcn 24755 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) & ⊢ 𝐽 = (TopOpen‘𝑀) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | cnmpt1ds 24756* | Continuity of the metric function; analogue of cnmpt12f 23579 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ MetSp) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵)) ∈ (𝐾 Cn 𝑅)) | ||
| Theorem | cnmpt2ds 24757* | Continuity of the metric function; analogue of cnmpt22f 23588 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ MetSp) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐷𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅)) | ||
| Theorem | nmcn 24758 | The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | ngnmcncn 24759 | The norm of a normed group is a continuous function to ℂ. (Contributed by NM, 12-Aug-2007.) (Revised by AV, 17-Oct-2021.) |
| ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | abscn 24760 | The absolute value function on complex numbers is continuous. (Contributed by NM, 22-Aug-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ abs ∈ (𝐽 Cn 𝐾) | ||
| Theorem | metdsval 24761* | Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Revised by AV, 30-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) | ||
| Theorem | metdsf 24762* | The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) | ||
| Theorem | metdsge 24763* | The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅)) | ||
| Theorem | metds0 24764* | If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) | ||
| Theorem | metdstri 24765* | A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol 𝑑 denotes the point-point and point-set distance functions, this theorem would be written 𝑑(𝑎, 𝑆) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑆). (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) | ||
| Theorem | metdsle 24766* | The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metdsre 24767* | The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) | ||
| Theorem | metdseq0 24768* | The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆))) | ||
| Theorem | metdscnlem 24769* | Lemma for metdscn 24770. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) | ||
| Theorem | metdscn 24770* | The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | metdscn2 24771* | The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | metnrmlem1a 24772* | Lemma for metnrm 24776. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 < (𝐹‘𝐴) ∧ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈ ℝ+)) | ||
| Theorem | metnrmlem1 24773* | Lemma for metnrm 24776. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metnrmlem2 24774* | Lemma for metnrm 24776. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈)) | ||
| Theorem | metnrmlem3 24775* | Lemma for metnrm 24776. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝑉 = ∪ 𝑠 ∈ 𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺‘𝑠), 1, (𝐺‘𝑠)) / 2)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) | ||
| Theorem | metnrm 24776 | A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013.) (Revised by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm) | ||
| Theorem | metreg 24777 | A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Reg) | ||
| Theorem | addcnlem 24778* | Lemma for addcn 24779, subcn 24780, and mulcn 24781. (Contributed by Mario Carneiro, 5-May-2014.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ + :(ℂ × ℂ)⟶ℂ & ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | addcn 24779 | Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | subcn 24780 | Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ − ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | mulcn 24781 | Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) Usage of this theorem is discouraged because it depends on ax-mulf 11083. Use mpomulcn 24783 instead. (New usage is discouraged.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | divcnOLD 24782 | Obsolete version of divcn 24784 as of 6-Apr-2025. (Contributed by Mario Carneiro, 12-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (ℂ ∖ {0})) ⇒ ⊢ / ∈ ((𝐽 ×t 𝐾) Cn 𝐽) | ||
| Theorem | mpomulcn 24783* | Complex number multiplication is a continuous function. Version of mulcn 24781 using maps-to notation, which does not require ax-mulf 11083. (Contributed by GG, 16-Mar-2025.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | divcn 24784 | Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.) Avoid ax-mulf 11083. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (ℂ ∖ {0})) ⇒ ⊢ / ∈ ((𝐽 ×t 𝐾) Cn 𝐽) | ||
| Theorem | cnfldtgp 24785 | The complex numbers form a topological group under addition, with the standard topology induced by the absolute value metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ℂfld ∈ TopGrp | ||
| Theorem | fsumcn 24786* | A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | fsum2cn 24787* | Version of fsumcn 24786 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) | ||
| Theorem | expcn 24788* | The power function on complex numbers, for fixed exponent 𝑁, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 11083. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | divccn 24789* | Division by a nonzero constant is a continuous operation. (Contributed by Mario Carneiro, 5-May-2014.) Avoid ax-mulf 11083. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴)) ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | expcnOLD 24790* | Obsolete version of expcn 24788 as of 6-Apr-2025. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | divccnOLD 24791* | Obsolete version of divccn 24789 as of 6-Apr-2025. (Contributed by Mario Carneiro, 5-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴)) ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | sqcn 24792* | The square function on complex numbers is continuous. (Contributed by NM, 13-Jun-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ (𝐽 Cn 𝐽) | ||
| Syntax | cii 24793 | Extend class notation with the unit interval. |
| class II | ||
| Syntax | ccncf 24794 | Extend class notation to include the operation which returns a class of continuous complex functions. |
| class –cn→ | ||
| Definition | df-ii 24795 | Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | ||
| Definition | df-cncf 24796* | Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.) |
| ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) | ||
| Theorem | iitopon 24797 | The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ II ∈ (TopOn‘(0[,]1)) | ||
| Theorem | iitop 24798 | The unit interval is a topological space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ II ∈ Top | ||
| Theorem | iiuni 24799 | The base set of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Jan-2014.) |
| ⊢ (0[,]1) = ∪ II | ||
| Theorem | dfii2 24800 | Alternate definition of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |