Detailed syntax breakdown of Definition df-pj1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cpj1 19654 | . 2
class
proj1 | 
| 2 |  | vw | . . 3
setvar 𝑤 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 |  | vt | . . . 4
setvar 𝑡 | 
| 5 |  | vu | . . . 4
setvar 𝑢 | 
| 6 | 2 | cv 1538 | . . . . . 6
class 𝑤 | 
| 7 |  | cbs 17248 | . . . . . 6
class
Base | 
| 8 | 6, 7 | cfv 6560 | . . . . 5
class
(Base‘𝑤) | 
| 9 | 8 | cpw 4599 | . . . 4
class 𝒫
(Base‘𝑤) | 
| 10 |  | vz | . . . . 5
setvar 𝑧 | 
| 11 | 4 | cv 1538 | . . . . . 6
class 𝑡 | 
| 12 | 5 | cv 1538 | . . . . . 6
class 𝑢 | 
| 13 |  | clsm 19653 | . . . . . . 7
class
LSSum | 
| 14 | 6, 13 | cfv 6560 | . . . . . 6
class
(LSSum‘𝑤) | 
| 15 | 11, 12, 14 | co 7432 | . . . . 5
class (𝑡(LSSum‘𝑤)𝑢) | 
| 16 | 10 | cv 1538 | . . . . . . . 8
class 𝑧 | 
| 17 |  | vx | . . . . . . . . . 10
setvar 𝑥 | 
| 18 | 17 | cv 1538 | . . . . . . . . 9
class 𝑥 | 
| 19 |  | vy | . . . . . . . . . 10
setvar 𝑦 | 
| 20 | 19 | cv 1538 | . . . . . . . . 9
class 𝑦 | 
| 21 |  | cplusg 17298 | . . . . . . . . . 10
class
+g | 
| 22 | 6, 21 | cfv 6560 | . . . . . . . . 9
class
(+g‘𝑤) | 
| 23 | 18, 20, 22 | co 7432 | . . . . . . . 8
class (𝑥(+g‘𝑤)𝑦) | 
| 24 | 16, 23 | wceq 1539 | . . . . . . 7
wff 𝑧 = (𝑥(+g‘𝑤)𝑦) | 
| 25 | 24, 19, 12 | wrex 3069 | . . . . . 6
wff
∃𝑦 ∈
𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦) | 
| 26 | 25, 17, 11 | crio 7388 | . . . . 5
class
(℩𝑥
∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦)) | 
| 27 | 10, 15, 26 | cmpt 5224 | . . . 4
class (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))) | 
| 28 | 4, 5, 9, 9, 27 | cmpo 7434 | . . 3
class (𝑡 ∈ 𝒫
(Base‘𝑤), 𝑢 ∈ 𝒫
(Base‘𝑤) ↦
(𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦)))) | 
| 29 | 2, 3, 28 | cmpt 5224 | . 2
class (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫
(Base‘𝑤), 𝑢 ∈ 𝒫
(Base‘𝑤) ↦
(𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) | 
| 30 | 1, 29 | wceq 1539 | 1
wff
proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) |