Detailed syntax breakdown of Definition df-pj1
| Step | Hyp | Ref
| Expression |
| 1 | | cpj1 19621 |
. 2
class
proj1 |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vt |
. . . 4
setvar 𝑡 |
| 5 | | vu |
. . . 4
setvar 𝑢 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑤 |
| 7 | | cbs 17233 |
. . . . . 6
class
Base |
| 8 | 6, 7 | cfv 6536 |
. . . . 5
class
(Base‘𝑤) |
| 9 | 8 | cpw 4580 |
. . . 4
class 𝒫
(Base‘𝑤) |
| 10 | | vz |
. . . . 5
setvar 𝑧 |
| 11 | 4 | cv 1539 |
. . . . . 6
class 𝑡 |
| 12 | 5 | cv 1539 |
. . . . . 6
class 𝑢 |
| 13 | | clsm 19620 |
. . . . . . 7
class
LSSum |
| 14 | 6, 13 | cfv 6536 |
. . . . . 6
class
(LSSum‘𝑤) |
| 15 | 11, 12, 14 | co 7410 |
. . . . 5
class (𝑡(LSSum‘𝑤)𝑢) |
| 16 | 10 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 17 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 18 | 17 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 19 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 20 | 19 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 21 | | cplusg 17276 |
. . . . . . . . . 10
class
+g |
| 22 | 6, 21 | cfv 6536 |
. . . . . . . . 9
class
(+g‘𝑤) |
| 23 | 18, 20, 22 | co 7410 |
. . . . . . . 8
class (𝑥(+g‘𝑤)𝑦) |
| 24 | 16, 23 | wceq 1540 |
. . . . . . 7
wff 𝑧 = (𝑥(+g‘𝑤)𝑦) |
| 25 | 24, 19, 12 | wrex 3061 |
. . . . . 6
wff
∃𝑦 ∈
𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦) |
| 26 | 25, 17, 11 | crio 7366 |
. . . . 5
class
(℩𝑥
∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦)) |
| 27 | 10, 15, 26 | cmpt 5206 |
. . . 4
class (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))) |
| 28 | 4, 5, 9, 9, 27 | cmpo 7412 |
. . 3
class (𝑡 ∈ 𝒫
(Base‘𝑤), 𝑢 ∈ 𝒫
(Base‘𝑤) ↦
(𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦)))) |
| 29 | 2, 3, 28 | cmpt 5206 |
. 2
class (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫
(Base‘𝑤), 𝑢 ∈ 𝒫
(Base‘𝑤) ↦
(𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) |
| 30 | 1, 29 | wceq 1540 |
1
wff
proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) |