Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1fval Structured version   Visualization version   GIF version

Theorem pj1fval 18742
 Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v 𝐵 = (Base‘𝐺)
pj1fval.a + = (+g𝐺)
pj1fval.s = (LSSum‘𝐺)
pj1fval.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1fval ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
Distinct variable groups:   𝑧, +   𝑥,𝑦,𝑧,𝐵   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   + (𝑥,𝑦)

Proof of Theorem pj1fval
Dummy variables 𝑡 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1fval.p . . 3 𝑃 = (proj1𝐺)
2 elex 3517 . . . . 5 (𝐺𝑉𝐺 ∈ V)
323ad2ant1 1127 . . . 4 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝐺 ∈ V)
4 fveq2 6666 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
5 pj1fval.v . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5syl6eqr 2878 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
76pweqd 4546 . . . . . 6 (𝑔 = 𝐺 → 𝒫 (Base‘𝑔) = 𝒫 𝐵)
8 fveq2 6666 . . . . . . . . 9 (𝑔 = 𝐺 → (LSSum‘𝑔) = (LSSum‘𝐺))
9 pj1fval.s . . . . . . . . 9 = (LSSum‘𝐺)
108, 9syl6eqr 2878 . . . . . . . 8 (𝑔 = 𝐺 → (LSSum‘𝑔) = )
1110oveqd 7168 . . . . . . 7 (𝑔 = 𝐺 → (𝑡(LSSum‘𝑔)𝑢) = (𝑡 𝑢))
12 fveq2 6666 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
13 pj1fval.a . . . . . . . . . . . 12 + = (+g𝐺)
1412, 13syl6eqr 2878 . . . . . . . . . . 11 (𝑔 = 𝐺 → (+g𝑔) = + )
1514oveqd 7168 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
1615eqeq2d 2836 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑧 = (𝑥(+g𝑔)𝑦) ↔ 𝑧 = (𝑥 + 𝑦)))
1716rexbidv 3301 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦) ↔ ∃𝑦𝑢 𝑧 = (𝑥 + 𝑦)))
1817riotabidv 7111 . . . . . . 7 (𝑔 = 𝐺 → (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)) = (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))
1911, 18mpteq12dv 5147 . . . . . 6 (𝑔 = 𝐺 → (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦))) = (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦))))
207, 7, 19mpoeq123dv 7224 . . . . 5 (𝑔 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
21 df-pj1 18684 . . . . 5 proj1 = (𝑔 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)))))
225fvexi 6680 . . . . . . 7 𝐵 ∈ V
2322pwex 5277 . . . . . 6 𝒫 𝐵 ∈ V
2423, 23mpoex 7771 . . . . 5 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))) ∈ V
2520, 21, 24fvmpt 6764 . . . 4 (𝐺 ∈ V → (proj1𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
263, 25syl 17 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (proj1𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
271, 26syl5eq 2872 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑃 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
28 oveq12 7160 . . . 4 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡 𝑢) = (𝑇 𝑈))
2928adantl 482 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑡 𝑢) = (𝑇 𝑈))
30 simprl 767 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → 𝑡 = 𝑇)
31 simprr 769 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → 𝑢 = 𝑈)
3231rexeqdv 3421 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (∃𝑦𝑢 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑧 = (𝑥 + 𝑦)))
3330, 32riotaeqbidv 7112 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)) = (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)))
3429, 33mpteq12dv 5147 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦))) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
35 simp2 1131 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑇𝐵)
3622elpw2 5244 . . 3 (𝑇 ∈ 𝒫 𝐵𝑇𝐵)
3735, 36sylibr 235 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑇 ∈ 𝒫 𝐵)
38 simp3 1132 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑈𝐵)
3922elpw2 5244 . . 3 (𝑈 ∈ 𝒫 𝐵𝑈𝐵)
4038, 39sylibr 235 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑈 ∈ 𝒫 𝐵)
41 ovex 7184 . . . 4 (𝑇 𝑈) ∈ V
4241mptex 6984 . . 3 (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V
4342a1i 11 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V)
4427, 34, 37, 40, 43ovmpod 7295 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∃wrex 3143  Vcvv 3499   ⊆ wss 3939  𝒫 cpw 4541   ↦ cmpt 5142  ‘cfv 6351  ℩crio 7108  (class class class)co 7151   ∈ cmpo 7153  Basecbs 16475  +gcplusg 16557  LSSumclsm 18681  proj1cpj1 18682 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-pj1 18684 This theorem is referenced by:  pj1val  18743  pj1f  18745
 Copyright terms: Public domain W3C validator