MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1fval Structured version   Visualization version   GIF version

Theorem pj1fval 19562
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v 𝐵 = (Base‘𝐺)
pj1fval.a + = (+g𝐺)
pj1fval.s = (LSSum‘𝐺)
pj1fval.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1fval ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
Distinct variable groups:   𝑧, +   𝑥,𝑦,𝑧,𝐵   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   + (𝑥,𝑦)

Proof of Theorem pj1fval
Dummy variables 𝑡 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1fval.p . . 3 𝑃 = (proj1𝐺)
2 elex 3493 . . . . 5 (𝐺𝑉𝐺 ∈ V)
323ad2ant1 1134 . . . 4 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝐺 ∈ V)
4 fveq2 6892 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
5 pj1fval.v . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2791 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
76pweqd 4620 . . . . . 6 (𝑔 = 𝐺 → 𝒫 (Base‘𝑔) = 𝒫 𝐵)
8 fveq2 6892 . . . . . . . . 9 (𝑔 = 𝐺 → (LSSum‘𝑔) = (LSSum‘𝐺))
9 pj1fval.s . . . . . . . . 9 = (LSSum‘𝐺)
108, 9eqtr4di 2791 . . . . . . . 8 (𝑔 = 𝐺 → (LSSum‘𝑔) = )
1110oveqd 7426 . . . . . . 7 (𝑔 = 𝐺 → (𝑡(LSSum‘𝑔)𝑢) = (𝑡 𝑢))
12 fveq2 6892 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
13 pj1fval.a . . . . . . . . . . . 12 + = (+g𝐺)
1412, 13eqtr4di 2791 . . . . . . . . . . 11 (𝑔 = 𝐺 → (+g𝑔) = + )
1514oveqd 7426 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
1615eqeq2d 2744 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑧 = (𝑥(+g𝑔)𝑦) ↔ 𝑧 = (𝑥 + 𝑦)))
1716rexbidv 3179 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦) ↔ ∃𝑦𝑢 𝑧 = (𝑥 + 𝑦)))
1817riotabidv 7367 . . . . . . 7 (𝑔 = 𝐺 → (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)) = (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))
1911, 18mpteq12dv 5240 . . . . . 6 (𝑔 = 𝐺 → (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦))) = (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦))))
207, 7, 19mpoeq123dv 7484 . . . . 5 (𝑔 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
21 df-pj1 19505 . . . . 5 proj1 = (𝑔 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)))))
225fvexi 6906 . . . . . . 7 𝐵 ∈ V
2322pwex 5379 . . . . . 6 𝒫 𝐵 ∈ V
2423, 23mpoex 8066 . . . . 5 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))) ∈ V
2520, 21, 24fvmpt 6999 . . . 4 (𝐺 ∈ V → (proj1𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
263, 25syl 17 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (proj1𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
271, 26eqtrid 2785 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑃 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
28 oveq12 7418 . . . 4 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡 𝑢) = (𝑇 𝑈))
2928adantl 483 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑡 𝑢) = (𝑇 𝑈))
30 simprl 770 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → 𝑡 = 𝑇)
31 simprr 772 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → 𝑢 = 𝑈)
3231rexeqdv 3327 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (∃𝑦𝑢 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑧 = (𝑥 + 𝑦)))
3330, 32riotaeqbidv 7368 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)) = (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)))
3429, 33mpteq12dv 5240 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦))) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
35 simp2 1138 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑇𝐵)
3622elpw2 5346 . . 3 (𝑇 ∈ 𝒫 𝐵𝑇𝐵)
3735, 36sylibr 233 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑇 ∈ 𝒫 𝐵)
38 simp3 1139 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑈𝐵)
3922elpw2 5346 . . 3 (𝑈 ∈ 𝒫 𝐵𝑈𝐵)
4038, 39sylibr 233 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑈 ∈ 𝒫 𝐵)
41 ovex 7442 . . . 4 (𝑇 𝑈) ∈ V
4241mptex 7225 . . 3 (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V
4342a1i 11 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V)
4427, 34, 37, 40, 43ovmpod 7560 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  Vcvv 3475  wss 3949  𝒫 cpw 4603  cmpt 5232  cfv 6544  crio 7364  (class class class)co 7409  cmpo 7411  Basecbs 17144  +gcplusg 17197  LSSumclsm 19502  proj1cpj1 19503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-pj1 19505
This theorem is referenced by:  pj1val  19563  pj1f  19565
  Copyright terms: Public domain W3C validator