MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1fval Structured version   Visualization version   GIF version

Theorem pj1fval 19736
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v 𝐵 = (Base‘𝐺)
pj1fval.a + = (+g𝐺)
pj1fval.s = (LSSum‘𝐺)
pj1fval.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1fval ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
Distinct variable groups:   𝑧, +   𝑥,𝑦,𝑧,𝐵   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   + (𝑥,𝑦)

Proof of Theorem pj1fval
Dummy variables 𝑡 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1fval.p . . 3 𝑃 = (proj1𝐺)
2 elex 3509 . . . . 5 (𝐺𝑉𝐺 ∈ V)
323ad2ant1 1133 . . . 4 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝐺 ∈ V)
4 fveq2 6920 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
5 pj1fval.v . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2798 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
76pweqd 4639 . . . . . 6 (𝑔 = 𝐺 → 𝒫 (Base‘𝑔) = 𝒫 𝐵)
8 fveq2 6920 . . . . . . . . 9 (𝑔 = 𝐺 → (LSSum‘𝑔) = (LSSum‘𝐺))
9 pj1fval.s . . . . . . . . 9 = (LSSum‘𝐺)
108, 9eqtr4di 2798 . . . . . . . 8 (𝑔 = 𝐺 → (LSSum‘𝑔) = )
1110oveqd 7465 . . . . . . 7 (𝑔 = 𝐺 → (𝑡(LSSum‘𝑔)𝑢) = (𝑡 𝑢))
12 fveq2 6920 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
13 pj1fval.a . . . . . . . . . . . 12 + = (+g𝐺)
1412, 13eqtr4di 2798 . . . . . . . . . . 11 (𝑔 = 𝐺 → (+g𝑔) = + )
1514oveqd 7465 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
1615eqeq2d 2751 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑧 = (𝑥(+g𝑔)𝑦) ↔ 𝑧 = (𝑥 + 𝑦)))
1716rexbidv 3185 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦) ↔ ∃𝑦𝑢 𝑧 = (𝑥 + 𝑦)))
1817riotabidv 7406 . . . . . . 7 (𝑔 = 𝐺 → (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)) = (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))
1911, 18mpteq12dv 5257 . . . . . 6 (𝑔 = 𝐺 → (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦))) = (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦))))
207, 7, 19mpoeq123dv 7525 . . . . 5 (𝑔 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
21 df-pj1 19679 . . . . 5 proj1 = (𝑔 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑔)𝑦)))))
225fvexi 6934 . . . . . . 7 𝐵 ∈ V
2322pwex 5398 . . . . . 6 𝒫 𝐵 ∈ V
2423, 23mpoex 8120 . . . . 5 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))) ∈ V
2520, 21, 24fvmpt 7029 . . . 4 (𝐺 ∈ V → (proj1𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
263, 25syl 17 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (proj1𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
271, 26eqtrid 2792 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑃 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)))))
28 oveq12 7457 . . . 4 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡 𝑢) = (𝑇 𝑈))
2928adantl 481 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑡 𝑢) = (𝑇 𝑈))
30 simprl 770 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → 𝑡 = 𝑇)
31 simprr 772 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → 𝑢 = 𝑈)
3231rexeqdv 3335 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (∃𝑦𝑢 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑧 = (𝑥 + 𝑦)))
3330, 32riotaeqbidv 7407 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦)) = (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)))
3429, 33mpteq12dv 5257 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑡 = 𝑇𝑢 = 𝑈)) → (𝑧 ∈ (𝑡 𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥 + 𝑦))) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
35 simp2 1137 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑇𝐵)
3622elpw2 5352 . . 3 (𝑇 ∈ 𝒫 𝐵𝑇𝐵)
3735, 36sylibr 234 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑇 ∈ 𝒫 𝐵)
38 simp3 1138 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑈𝐵)
3922elpw2 5352 . . 3 (𝑈 ∈ 𝒫 𝐵𝑈𝐵)
4038, 39sylibr 234 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → 𝑈 ∈ 𝒫 𝐵)
41 ovex 7481 . . . 4 (𝑇 𝑈) ∈ V
4241mptex 7260 . . 3 (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V
4342a1i 11 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V)
4427, 34, 37, 40, 43ovmpod 7602 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976  𝒫 cpw 4622  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  LSSumclsm 19676  proj1cpj1 19677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-pj1 19679
This theorem is referenced by:  pj1val  19737  pj1f  19739
  Copyright terms: Public domain W3C validator