Step | Hyp | Ref
| Expression |
1 | | pj1fval.p |
. . 3
⊢ 𝑃 = (proj1‘𝐺) |
2 | | elex 3440 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
3 | 2 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝐺 ∈ V) |
4 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
5 | | pj1fval.v |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
6 | 4, 5 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
7 | 6 | pweqd 4549 |
. . . . . 6
⊢ (𝑔 = 𝐺 → 𝒫 (Base‘𝑔) = 𝒫 𝐵) |
8 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (LSSum‘𝑔) = (LSSum‘𝐺)) |
9 | | pj1fval.s |
. . . . . . . . 9
⊢ ⊕ =
(LSSum‘𝐺) |
10 | 8, 9 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (LSSum‘𝑔) = ⊕ ) |
11 | 10 | oveqd 7272 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑡(LSSum‘𝑔)𝑢) = (𝑡 ⊕ 𝑢)) |
12 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) |
13 | | pj1fval.a |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝐺) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
15 | 14 | oveqd 7272 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
16 | 15 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑧 = (𝑥(+g‘𝑔)𝑦) ↔ 𝑧 = (𝑥 + 𝑦))) |
17 | 16 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦) ↔ ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))) |
18 | 17 | riotabidv 7214 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦)) = (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))) |
19 | 11, 18 | mpteq12dv 5161 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦))) = (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦)))) |
20 | 7, 7, 19 | mpoeq123dv 7328 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦)))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
21 | | df-pj1 19157 |
. . . . 5
⊢
proj1 = (𝑔 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦))))) |
22 | 5 | fvexi 6770 |
. . . . . . 7
⊢ 𝐵 ∈ V |
23 | 22 | pwex 5298 |
. . . . . 6
⊢ 𝒫
𝐵 ∈ V |
24 | 23, 23 | mpoex 7893 |
. . . . 5
⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦)))) ∈ V |
25 | 20, 21, 24 | fvmpt 6857 |
. . . 4
⊢ (𝐺 ∈ V →
(proj1‘𝐺)
= (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
26 | 3, 25 | syl 17 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (proj1‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
27 | 1, 26 | eqtrid 2790 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑃 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
28 | | oveq12 7264 |
. . . 4
⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑡 ⊕ 𝑢) = (𝑇 ⊕ 𝑈)) |
29 | 28 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (𝑡 ⊕ 𝑢) = (𝑇 ⊕ 𝑈)) |
30 | | simprl 767 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → 𝑡 = 𝑇) |
31 | | simprr 769 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → 𝑢 = 𝑈) |
32 | 31 | rexeqdv 3340 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) |
33 | 30, 32 | riotaeqbidv 7215 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦)) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) |
34 | 29, 33 | mpteq12dv 5161 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |
35 | | simp2 1135 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) |
36 | 22 | elpw2 5264 |
. . 3
⊢ (𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵) |
37 | 35, 36 | sylibr 233 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ∈ 𝒫 𝐵) |
38 | | simp3 1136 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) |
39 | 22 | elpw2 5264 |
. . 3
⊢ (𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵) |
40 | 38, 39 | sylibr 233 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ∈ 𝒫 𝐵) |
41 | | ovex 7288 |
. . . 4
⊢ (𝑇 ⊕ 𝑈) ∈ V |
42 | 41 | mptex 7081 |
. . 3
⊢ (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V |
43 | 42 | a1i 11 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V) |
44 | 27, 34, 37, 40, 43 | ovmpod 7403 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |