| Step | Hyp | Ref
| Expression |
| 1 | | pj1fval.p |
. . 3
⊢ 𝑃 = (proj1‘𝐺) |
| 2 | | elex 3501 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
| 3 | 2 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝐺 ∈ V) |
| 4 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
| 5 | | pj1fval.v |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 6 | 4, 5 | eqtr4di 2795 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 7 | 6 | pweqd 4617 |
. . . . . 6
⊢ (𝑔 = 𝐺 → 𝒫 (Base‘𝑔) = 𝒫 𝐵) |
| 8 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (LSSum‘𝑔) = (LSSum‘𝐺)) |
| 9 | | pj1fval.s |
. . . . . . . . 9
⊢ ⊕ =
(LSSum‘𝐺) |
| 10 | 8, 9 | eqtr4di 2795 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (LSSum‘𝑔) = ⊕ ) |
| 11 | 10 | oveqd 7448 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑡(LSSum‘𝑔)𝑢) = (𝑡 ⊕ 𝑢)) |
| 12 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) |
| 13 | | pj1fval.a |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝐺) |
| 14 | 12, 13 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 15 | 14 | oveqd 7448 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
| 16 | 15 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑧 = (𝑥(+g‘𝑔)𝑦) ↔ 𝑧 = (𝑥 + 𝑦))) |
| 17 | 16 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦) ↔ ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))) |
| 18 | 17 | riotabidv 7390 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦)) = (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))) |
| 19 | 11, 18 | mpteq12dv 5233 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦))) = (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦)))) |
| 20 | 7, 7, 19 | mpoeq123dv 7508 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦)))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
| 21 | | df-pj1 19655 |
. . . . 5
⊢
proj1 = (𝑔 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑔), 𝑢 ∈ 𝒫 (Base‘𝑔) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑔)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑔)𝑦))))) |
| 22 | 5 | fvexi 6920 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 23 | 22 | pwex 5380 |
. . . . . 6
⊢ 𝒫
𝐵 ∈ V |
| 24 | 23, 23 | mpoex 8104 |
. . . . 5
⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦)))) ∈ V |
| 25 | 20, 21, 24 | fvmpt 7016 |
. . . 4
⊢ (𝐺 ∈ V →
(proj1‘𝐺)
= (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
| 26 | 3, 25 | syl 17 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (proj1‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
| 27 | 1, 26 | eqtrid 2789 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑃 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))))) |
| 28 | | oveq12 7440 |
. . . 4
⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑡 ⊕ 𝑢) = (𝑇 ⊕ 𝑈)) |
| 29 | 28 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (𝑡 ⊕ 𝑢) = (𝑇 ⊕ 𝑈)) |
| 30 | | simprl 771 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → 𝑡 = 𝑇) |
| 31 | | simprr 773 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → 𝑢 = 𝑈) |
| 32 | 31 | rexeqdv 3327 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) |
| 33 | 30, 32 | riotaeqbidv 7391 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦)) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) |
| 34 | 29, 33 | mpteq12dv 5233 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑡 = 𝑇 ∧ 𝑢 = 𝑈)) → (𝑧 ∈ (𝑡 ⊕ 𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥 + 𝑦))) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |
| 35 | | simp2 1138 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) |
| 36 | 22 | elpw2 5334 |
. . 3
⊢ (𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵) |
| 37 | 35, 36 | sylibr 234 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑇 ∈ 𝒫 𝐵) |
| 38 | | simp3 1139 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) |
| 39 | 22 | elpw2 5334 |
. . 3
⊢ (𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵) |
| 40 | 38, 39 | sylibr 234 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → 𝑈 ∈ 𝒫 𝐵) |
| 41 | | ovex 7464 |
. . . 4
⊢ (𝑇 ⊕ 𝑈) ∈ V |
| 42 | 41 | mptex 7243 |
. . 3
⊢ (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V |
| 43 | 42 | a1i 11 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦))) ∈ V) |
| 44 | 27, 34, 37, 40, 43 | ovmpod 7585 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |