HomeHome Metamath Proof Explorer
Theorem List (p. 196 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 19501-19600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnn0gsumfz0 19501* Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐹 ∈ (𝐵m0))    &   (𝜑𝐹 finSupp 0 )       (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
 
Theoremgsummptnn0fz 19502* A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)    &   (𝜑𝑆 ∈ ℕ0)    &   (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))       (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
 
Theoremgsummptnn0fzfv 19503* A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐹 ∈ (𝐵m0))    &   (𝜑𝑆 ∈ ℕ0)    &   (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))       (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹𝑘))))
 
Theoremtelgsumfzslem 19504* Lemma for telgsumfzs 19505 (induction step). (Contributed by AV, 23-Nov-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &    = (-g𝐺)       ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
 
Theoremtelgsumfzs 19505* Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &    = (-g𝐺)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)       (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
 
Theoremtelgsumfz 19506* Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15444. (Contributed by AV, 23-Nov-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &    = (-g𝐺)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴𝐵)    &   (𝑘 = 𝑖𝐴 = 𝐿)    &   (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)    &   (𝑘 = 𝑀𝐴 = 𝐷)    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)       (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶))) = (𝐷 𝐸))
 
Theoremtelgsumfz0s 19507* Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &    = (-g𝐺)    &   (𝜑𝑆 ∈ ℕ0)    &   (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵)       (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶))
 
Theoremtelgsumfz0 19508* Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15444. (Contributed by AV, 23-Nov-2019.)
𝐾 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &    = (-g𝐺)    &   (𝜑𝑆 ∈ ℕ0)    &   (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴𝐾)    &   (𝑘 = 𝑖𝐴 = 𝐵)    &   (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)    &   (𝑘 = 0 → 𝐴 = 𝐷)    &   (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸)       (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 𝐶))) = (𝐷 𝐸))
 
Theoremtelgsums 19509* Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &    = (-g𝐺)    &    0 = (0g𝐺)    &   (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)    &   (𝜑𝑆 ∈ ℕ0)    &   (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))       (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
 
Theoremtelgsum 19510* Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Abel)    &    = (-g𝐺)    &    0 = (0g𝐺)    &   (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)    &   (𝜑𝑆 ∈ ℕ0)    &   (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))    &   (𝑘 = 𝑖𝐴 = 𝐶)    &   (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)    &   (𝑘 = 0 → 𝐴 = 𝐸)       (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
 
10.2.14.5  Internal direct products
 
Syntaxcdprd 19511 Internal direct product of a family of subgroups.
class DProd
 
Syntaxcdpj 19512 Projection operator for a direct product.
class dProj
 
Definitiondf-dprd 19513* Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 11-Jul-2019.)
DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
 
Definitiondf-dpj 19514* Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016.)
dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))))
 
Theoremreldmdprd 19515 The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Rel dom DProd
 
Theoremdmdprd 19516* The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
𝑍 = (Cntz‘𝐺)    &    0 = (0g𝐺)    &   𝐾 = (mrCls‘(SubGrp‘𝐺))       ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
 
Theoremdmdprdd 19517* Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
𝑍 = (Cntz‘𝐺)    &    0 = (0g𝐺)    &   𝐾 = (mrCls‘(SubGrp‘𝐺))    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))    &   ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))    &   ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })       (𝜑𝐺dom DProd 𝑆)
 
Theoremdprddomprc 19518 A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.)
(dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
 
Theoremdprddomcld 19519 If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)       (𝜑𝐼 ∈ V)
 
Theoremdprdval0prc 19520 The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.)
(dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)
 
Theoremdprdval 19521* The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }       ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
 
Theoremeldprd 19522* A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }       (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
 
Theoremdprdgrp 19523 Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝐺dom DProd 𝑆𝐺 ∈ Grp)
 
Theoremdprdf 19524 The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
 
Theoremdprdf2 19525 The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)       (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
 
Theoremdprdcntz 19526 The function 𝑆 is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)    &   (𝜑𝑌𝐼)    &   (𝜑𝑋𝑌)    &   𝑍 = (Cntz‘𝐺)       (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
 
Theoremdprddisj 19527 The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)    &    0 = (0g𝐺)    &   𝐾 = (mrCls‘(SubGrp‘𝐺))       (𝜑 → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })
 
Theoremdprdw 19528* The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)       (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
 
Theoremdprdwd 19529* A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.)
𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   ((𝜑𝑥𝐼) → 𝐴 ∈ (𝑆𝑥))    &   (𝜑 → (𝑥𝐼𝐴) finSupp 0 )       (𝜑 → (𝑥𝐼𝐴) ∈ 𝑊)
 
Theoremdprdff 19530* A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)    &   𝐵 = (Base‘𝐺)       (𝜑𝐹:𝐼𝐵)
 
Theoremdprdfcl 19531* A finitely supported function in 𝑆 has its 𝑋-th element in 𝑆(𝑋). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)       ((𝜑𝑋𝐼) → (𝐹𝑋) ∈ (𝑆𝑋))
 
Theoremdprdffsupp 19532* A finitely supported function in 𝑆 is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)       (𝜑𝐹 finSupp 0 )
 
Theoremdprdfcntz 19533* A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)    &   𝑍 = (Cntz‘𝐺)       (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
 
Theoremdprdssv 19534 The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.)
𝐵 = (Base‘𝐺)       (𝐺 DProd 𝑆) ⊆ 𝐵
 
Theoremdprdfid 19535* A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)    &   (𝜑𝐴 ∈ (𝑆𝑋))    &   𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))       (𝜑 → (𝐹𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴))
 
Theoremeldprdi 19536* The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)       (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
 
Theoremdprdfinv 19537* Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)    &   𝑁 = (invg𝐺)       (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
 
Theoremdprdfadd 19538* Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)    &   (𝜑𝐻𝑊)    &    + = (+g𝐺)       (𝜑 → ((𝐹f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
 
Theoremdprdfsub 19539* Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)    &   (𝜑𝐻𝑊)    &    = (-g𝐺)       (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
 
Theoremdprdfeq0 19540* The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)       (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
 
Theoremdprdf11 19541* Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹𝑊)    &   (𝜑𝐻𝑊)       (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
 
Theoremdprdsubg 19542 The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
 
Theoremdprdub 19543 Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)       (𝜑 → (𝑆𝑋) ⊆ (𝐺 DProd 𝑆))
 
Theoremdprdlub 19544* The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑇 ∈ (SubGrp‘𝐺))    &   ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ 𝑇)       (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇)
 
Theoremdprdspan 19545 The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))       (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾 ran 𝑆))
 
Theoremdprdres 19546 Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐴𝐼)       (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆)))
 
Theoremdprdss 19547* Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑇)    &   (𝜑 → dom 𝑇 = 𝐼)    &   (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))    &   ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))       (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
 
Theoremdprdz 19548* A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
 
Theoremdprd0 19549 The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
0 = (0g𝐺)       (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 }))
 
Theoremdprdf1o 19550 Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹:𝐽1-1-onto𝐼)       (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))
 
Theoremdprdf1 19551 Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐹:𝐽1-1𝐼)       (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) ⊆ (𝐺 DProd 𝑆)))
 
Theoremsubgdmdprd 19552 A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐻 = (𝐺s 𝐴)       (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
 
Theoremsubgdprd 19553 A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐻 = (𝐺s 𝐴)    &   (𝜑𝐴 ∈ (SubGrp‘𝐺))    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴)       (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆))
 
Theoremdprdsn 19554 A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝐴, 𝑆⟩} ∧ (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆))
 
Theoremdmdprdsplitlem 19555* Lemma for dmdprdsplit 19565. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐴𝐼)    &   (𝜑𝐹𝑊)    &   (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))       ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
 
Theoremdprdcntz2 19556 The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐶𝐼)    &   (𝜑𝐷𝐼)    &   (𝜑 → (𝐶𝐷) = ∅)    &   𝑍 = (Cntz‘𝐺)       (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
 
Theoremdprddisj2 19557 The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝐶𝐼)    &   (𝜑𝐷𝐼)    &   (𝜑 → (𝐶𝐷) = ∅)    &    0 = (0g𝐺)       (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
 
Theoremdprd2dlem2 19558* The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑 → Rel 𝐴)    &   (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))    &   (𝜑 → dom 𝐴𝐼)    &   ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))    &   (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))    &   𝐾 = (mrCls‘(SubGrp‘𝐺))       ((𝜑𝑋𝐴) → (𝑆𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑋)}) ↦ ((1st𝑋)𝑆𝑗))))
 
Theoremdprd2dlem1 19559* The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑 → Rel 𝐴)    &   (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))    &   (𝜑 → dom 𝐴𝐼)    &   ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))    &   (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))    &   𝐾 = (mrCls‘(SubGrp‘𝐺))    &   (𝜑𝐶𝐼)       (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
 
Theoremdprd2da 19560* The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑 → Rel 𝐴)    &   (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))    &   (𝜑 → dom 𝐴𝐼)    &   ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))    &   (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))    &   𝐾 = (mrCls‘(SubGrp‘𝐺))       (𝜑𝐺dom DProd 𝑆)
 
Theoremdprd2db 19561* The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑 → Rel 𝐴)    &   (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))    &   (𝜑 → dom 𝐴𝐼)    &   ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))    &   (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))    &   𝐾 = (mrCls‘(SubGrp‘𝐺))       (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
 
Theoremdprd2d2 19562* The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))    &   ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))    &   (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))       (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
 
Theoremdmdprdsplit2lem 19563 Lemma for dmdprdsplit 19565. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝑆:𝐼⟶(SubGrp‘𝐺))    &   (𝜑 → (𝐶𝐷) = ∅)    &   (𝜑𝐼 = (𝐶𝐷))    &   𝑍 = (Cntz‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺dom DProd (𝑆𝐶))    &   (𝜑𝐺dom DProd (𝑆𝐷))    &   (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))    &   (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })    &   𝐾 = (mrCls‘(SubGrp‘𝐺))       ((𝜑𝑋𝐶) → ((𝑌𝐼 → (𝑋𝑌 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))) ∧ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }))
 
Theoremdmdprdsplit2 19564 The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑆:𝐼⟶(SubGrp‘𝐺))    &   (𝜑 → (𝐶𝐷) = ∅)    &   (𝜑𝐼 = (𝐶𝐷))    &   𝑍 = (Cntz‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺dom DProd (𝑆𝐶))    &   (𝜑𝐺dom DProd (𝑆𝐷))    &   (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))    &   (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })       (𝜑𝐺dom DProd 𝑆)
 
Theoremdmdprdsplit 19565 The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑆:𝐼⟶(SubGrp‘𝐺))    &   (𝜑 → (𝐶𝐷) = ∅)    &   (𝜑𝐼 = (𝐶𝐷))    &   𝑍 = (Cntz‘𝐺)    &    0 = (0g𝐺)       (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })))
 
Theoremdprdsplit 19566 The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑆:𝐼⟶(SubGrp‘𝐺))    &   (𝜑 → (𝐶𝐷) = ∅)    &   (𝜑𝐼 = (𝐶𝐷))    &    = (LSSum‘𝐺)    &   (𝜑𝐺dom DProd 𝑆)       (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
 
Theoremdmdprdpr 19567 A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
𝑍 = (Cntz‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑇 ∈ (SubGrp‘𝐺))       (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
 
Theoremdprdpr 19568 A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016.)
𝑍 = (Cntz‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑇 ∈ (SubGrp‘𝐺))    &    = (LSSum‘𝐺)    &   (𝜑𝑆 ⊆ (𝑍𝑇))    &   (𝜑 → (𝑆𝑇) = { 0 })       (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}) = (𝑆 𝑇))
 
Theoremdpjlem 19569 Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)       (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆𝑋))
 
Theoremdpjcntz 19570 The two subgroups that appear in dpjval 19574 commute. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)    &   𝑍 = (Cntz‘𝐺)       (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
 
Theoremdpjdisj 19571 The two subgroups that appear in dpjval 19574 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)    &    0 = (0g𝐺)       (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 })
 
Theoremdpjlsm 19572 The two subgroups that appear in dpjval 19574 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   (𝜑𝑋𝐼)    &    = (LSSum‘𝐺)       (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
 
Theoremdpjfval 19573* Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   𝑄 = (proj1𝐺)       (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
 
Theoremdpjval 19574 Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   𝑄 = (proj1𝐺)    &   (𝜑𝑋𝐼)       (𝜑 → (𝑃𝑋) = ((𝑆𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
 
Theoremdpjf 19575 The 𝑋-th index projection is a function from the direct product to the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝑋𝐼)       (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))
 
Theoremdpjidcl 19576* The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝐴 ∈ (𝐺 DProd 𝑆))    &    0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }       (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
 
Theoremdpjeq 19577* Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝐴 ∈ (𝐺 DProd 𝑆))    &    0 = (0g𝐺)    &   𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }    &   (𝜑 → (𝑥𝐼𝐶) ∈ 𝑊)       (𝜑 → (𝐴 = (𝐺 Σg (𝑥𝐼𝐶)) ↔ ∀𝑥𝐼 ((𝑃𝑥)‘𝐴) = 𝐶))
 
Theoremdpjid 19578* The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝐴 ∈ (𝐺 DProd 𝑆))       (𝜑𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
 
Theoremdpjlid 19579 The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝑋𝐼)    &   (𝜑𝐴 ∈ (𝑆𝑋))       (𝜑 → ((𝑃𝑋)‘𝐴) = 𝐴)
 
Theoremdpjrid 19580 The 𝑌-th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝑋𝐼)    &   (𝜑𝐴 ∈ (𝑆𝑋))    &    0 = (0g𝐺)    &   (𝜑𝑌𝐼)    &   (𝜑𝑌𝑋)       (𝜑 → ((𝑃𝑌)‘𝐴) = 0 )
 
Theoremdpjghm 19581 The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝑋𝐼)       (𝜑 → (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom 𝐺))
 
Theoremdpjghm2 19582 The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.)
(𝜑𝐺dom DProd 𝑆)    &   (𝜑 → dom 𝑆 = 𝐼)    &   𝑃 = (𝐺dProj𝑆)    &   (𝜑𝑋𝐼)       (𝜑 → (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom (𝐺s (𝑆𝑋))))
 
10.2.14.6  The Fundamental Theorem of Abelian Groups
 
Theoremablfacrplem 19583* Lemma for ablfacrp2 19585. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}    &   𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))       (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
 
Theoremablfacrp 19584* A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups 𝐾, 𝐿 that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}    &   𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)       (𝜑 → ((𝐾𝐿) = { 0 } ∧ (𝐾 𝐿) = 𝐵))
 
Theoremablfacrp2 19585* The factors 𝐾, 𝐿 of ablfacrp 19584 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}    &   𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))       (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
 
Theoremablfac1lem 19586* Lemma for ablfac1b 19588. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ⊆ ℙ)    &   𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))    &   𝑁 = ((♯‘𝐵) / 𝑀)       ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
 
Theoremablfac1a 19587* The factors of ablfac1b 19588 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ⊆ ℙ)       ((𝜑𝑃𝐴) → (♯‘(𝑆𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
 
Theoremablfac1b 19588* Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ⊆ ℙ)       (𝜑𝐺dom DProd 𝑆)
 
Theoremablfac1c 19589* The factors of ablfac1b 19588 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ⊆ ℙ)    &   𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}    &   (𝜑𝐷𝐴)       (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
 
Theoremablfac1eulem 19590* Lemma for ablfac1eu 19591. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ⊆ ℙ)    &   𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}    &   (𝜑𝐷𝐴)    &   (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))    &   (𝜑 → dom 𝑇 = 𝐴)    &   ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)    &   ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐴 ∈ Fin)       (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
 
Theoremablfac1eu 19591* The factorization of ablfac1b 19588 is unique, in that any other factorization into prime power factors (even if the exponents are different) must be equal to 𝑆. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ⊆ ℙ)    &   𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}    &   (𝜑𝐷𝐴)    &   (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))    &   (𝜑 → dom 𝑇 = 𝐴)    &   ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)    &   ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))       (𝜑𝑇 = 𝑆)
 
Theorempgpfac1lem1 19592* Lemma for pgpfac1 19598. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))    &   𝑆 = (𝐾‘{𝐴})    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐸 = (gEx‘𝐺)    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝑂𝐴) = 𝐸)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑𝐴𝑈)    &   (𝜑𝑊 ∈ (SubGrp‘𝐺))    &   (𝜑 → (𝑆𝑊) = { 0 })    &   (𝜑 → (𝑆 𝑊) ⊆ 𝑈)    &   (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))       ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
 
Theorempgpfac1lem2 19593* Lemma for pgpfac1 19598. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))    &   𝑆 = (𝐾‘{𝐴})    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐸 = (gEx‘𝐺)    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝑂𝐴) = 𝐸)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑𝐴𝑈)    &   (𝜑𝑊 ∈ (SubGrp‘𝐺))    &   (𝜑 → (𝑆𝑊) = { 0 })    &   (𝜑 → (𝑆 𝑊) ⊆ 𝑈)    &   (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))    &   (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))    &    · = (.g𝐺)       (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
 
Theorempgpfac1lem3a 19594* Lemma for pgpfac1 19598. (Contributed by Mario Carneiro, 4-Jun-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))    &   𝑆 = (𝐾‘{𝐴})    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐸 = (gEx‘𝐺)    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝑂𝐴) = 𝐸)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑𝐴𝑈)    &   (𝜑𝑊 ∈ (SubGrp‘𝐺))    &   (𝜑 → (𝑆𝑊) = { 0 })    &   (𝜑 → (𝑆 𝑊) ⊆ 𝑈)    &   (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))    &   (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))    &    · = (.g𝐺)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)       (𝜑 → (𝑃𝐸𝑃𝑀))
 
Theorempgpfac1lem3 19595* Lemma for pgpfac1 19598. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))    &   𝑆 = (𝐾‘{𝐴})    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐸 = (gEx‘𝐺)    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝑂𝐴) = 𝐸)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑𝐴𝑈)    &   (𝜑𝑊 ∈ (SubGrp‘𝐺))    &   (𝜑 → (𝑆𝑊) = { 0 })    &   (𝜑 → (𝑆 𝑊) ⊆ 𝑈)    &   (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))    &   (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))    &    · = (.g𝐺)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)    &   𝐷 = (𝐶(+g𝐺)((𝑀 / 𝑃) · 𝐴))       (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
 
Theorempgpfac1lem4 19596* Lemma for pgpfac1 19598. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))    &   𝑆 = (𝐾‘{𝐴})    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐸 = (gEx‘𝐺)    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝑂𝐴) = 𝐸)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑𝐴𝑈)    &   (𝜑𝑊 ∈ (SubGrp‘𝐺))    &   (𝜑 → (𝑆𝑊) = { 0 })    &   (𝜑 → (𝑆 𝑊) ⊆ 𝑈)    &   (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))    &   (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))    &    · = (.g𝐺)       (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
 
Theorempgpfac1lem5 19597* Lemma for pgpfac1 19598. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))    &   𝑆 = (𝐾‘{𝐴})    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐸 = (gEx‘𝐺)    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝑂𝐴) = 𝐸)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑𝐴𝑈)    &   (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑈𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))       (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
 
Theorempgpfac1 19598* Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
𝐾 = (mrCls‘(SubGrp‘𝐺))    &   𝑆 = (𝐾‘{𝐴})    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)    &   𝐸 = (gEx‘𝐺)    &    0 = (0g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝑂𝐴) = 𝐸)    &   (𝜑𝐴𝐵)       (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
 
Theorempgpfaclem1 19599* Lemma for pgpfac 19602. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))    &   𝐻 = (𝐺s 𝑈)    &   𝐾 = (mrCls‘(SubGrp‘𝐻))    &   𝑂 = (od‘𝐻)    &   𝐸 = (gEx‘𝐻)    &    0 = (0g𝐻)    &    = (LSSum‘𝐻)    &   (𝜑𝐸 ≠ 1)    &   (𝜑𝑋𝑈)    &   (𝜑 → (𝑂𝑋) = 𝐸)    &   (𝜑𝑊 ∈ (SubGrp‘𝐻))    &   (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })    &   (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)    &   (𝜑𝑆 ∈ Word 𝐶)    &   (𝜑𝐺dom DProd 𝑆)    &   (𝜑 → (𝐺 DProd 𝑆) = 𝑊)    &   𝑇 = (𝑆 ++ ⟨“(𝐾‘{𝑋})”⟩)       (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
 
Theorempgpfaclem2 19600* Lemma for pgpfac 19602. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑃 pGrp 𝐺)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝑈 ∈ (SubGrp‘𝐺))    &   (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))    &   𝐻 = (𝐺s 𝑈)    &   𝐾 = (mrCls‘(SubGrp‘𝐻))    &   𝑂 = (od‘𝐻)    &   𝐸 = (gEx‘𝐻)    &    0 = (0g𝐻)    &    = (LSSum‘𝐻)    &   (𝜑𝐸 ≠ 1)    &   (𝜑𝑋𝑈)    &   (𝜑 → (𝑂𝑋) = 𝐸)    &   (𝜑𝑊 ∈ (SubGrp‘𝐻))    &   (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 })    &   (𝜑 → ((𝐾‘{𝑋}) 𝑊) = 𝑈)       (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >