![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmfval | Structured version Visualization version GIF version |
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmfval | ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfval.s | . 2 ⊢ ⊕ = (LSSum‘𝐺) | |
2 | elex 3499 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
3 | fveq2 6907 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) | |
4 | lsmfval.v | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2793 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵) |
6 | 5 | pweqd 4622 | . . . . 5 ⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵) |
7 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = (+g‘𝐺)) | |
8 | lsmfval.a | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | eqtr4di 2793 | . . . . . . . 8 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = + ) |
10 | 9 | oveqd 7448 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (𝑥(+g‘𝑤)𝑦) = (𝑥 + 𝑦)) |
11 | 10 | mpoeq3dv 7512 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
12 | 11 | rneqd 5952 | . . . . 5 ⊢ (𝑤 = 𝐺 → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
13 | 6, 6, 12 | mpoeq123dv 7508 | . . . 4 ⊢ (𝑤 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
14 | df-lsm 19669 | . . . 4 ⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) | |
15 | 4 | fvexi 6921 | . . . . . 6 ⊢ 𝐵 ∈ V |
16 | 15 | pwex 5386 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
17 | 16, 16 | mpoex 8103 | . . . 4 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) ∈ V |
18 | 13, 14, 17 | fvmpt 7016 | . . 3 ⊢ (𝐺 ∈ V → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
19 | 2, 18 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝑉 → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
20 | 1, 19 | eqtrid 2787 | 1 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 𝒫 cpw 4605 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17245 +gcplusg 17298 LSSumclsm 19667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-lsm 19669 |
This theorem is referenced by: lsmvalx 19672 oppglsm 19675 lsmpropd 19710 rlmlsm 21230 |
Copyright terms: Public domain | W3C validator |