![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmfval | Structured version Visualization version GIF version |
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmfval | ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfval.s | . 2 ⊢ ⊕ = (LSSum‘𝐺) | |
2 | elex 3492 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
3 | fveq2 6888 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) | |
4 | lsmfval.v | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵) |
6 | 5 | pweqd 4618 | . . . . 5 ⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵) |
7 | fveq2 6888 | . . . . . . . . 9 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = (+g‘𝐺)) | |
8 | lsmfval.a | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | eqtr4di 2790 | . . . . . . . 8 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = + ) |
10 | 9 | oveqd 7422 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (𝑥(+g‘𝑤)𝑦) = (𝑥 + 𝑦)) |
11 | 10 | mpoeq3dv 7484 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
12 | 11 | rneqd 5935 | . . . . 5 ⊢ (𝑤 = 𝐺 → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
13 | 6, 6, 12 | mpoeq123dv 7480 | . . . 4 ⊢ (𝑤 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
14 | df-lsm 19498 | . . . 4 ⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) | |
15 | 4 | fvexi 6902 | . . . . . 6 ⊢ 𝐵 ∈ V |
16 | 15 | pwex 5377 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
17 | 16, 16 | mpoex 8062 | . . . 4 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) ∈ V |
18 | 13, 14, 17 | fvmpt 6995 | . . 3 ⊢ (𝐺 ∈ V → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
19 | 2, 18 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝑉 → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
20 | 1, 19 | eqtrid 2784 | 1 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 𝒫 cpw 4601 ran crn 5676 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17140 +gcplusg 17193 LSSumclsm 19496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-lsm 19498 |
This theorem is referenced by: lsmvalx 19501 oppglsm 19504 lsmpropd 19539 rlmlsm 20821 |
Copyright terms: Public domain | W3C validator |