MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmfval Structured version   Visualization version   GIF version

Theorem lsmfval 19552
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmfval (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
Distinct variable groups:   𝑢,𝑡,𝑥,𝑦, +   𝑡,𝐵,𝑢,𝑥,𝑦   𝑡,𝐺,𝑢,𝑥,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑢,𝑡)   𝑉(𝑥,𝑦,𝑢,𝑡)

Proof of Theorem lsmfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsmfval.s . 2 = (LSSum‘𝐺)
2 elex 3458 . . 3 (𝐺𝑉𝐺 ∈ V)
3 fveq2 6828 . . . . . . 7 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
4 lsmfval.v . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2786 . . . . . 6 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
65pweqd 4566 . . . . 5 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
7 fveq2 6828 . . . . . . . . 9 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
8 lsmfval.a . . . . . . . . 9 + = (+g𝐺)
97, 8eqtr4di 2786 . . . . . . . 8 (𝑤 = 𝐺 → (+g𝑤) = + )
109oveqd 7369 . . . . . . 7 (𝑤 = 𝐺 → (𝑥(+g𝑤)𝑦) = (𝑥 + 𝑦))
1110mpoeq3dv 7431 . . . . . 6 (𝑤 = 𝐺 → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
1211rneqd 5882 . . . . 5 (𝑤 = 𝐺 → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
136, 6, 12mpoeq123dv 7427 . . . 4 (𝑤 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
14 df-lsm 19550 . . . 4 LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))))
154fvexi 6842 . . . . . 6 𝐵 ∈ V
1615pwex 5320 . . . . 5 𝒫 𝐵 ∈ V
1716, 16mpoex 8017 . . . 4 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))) ∈ V
1813, 14, 17fvmpt 6935 . . 3 (𝐺 ∈ V → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
192, 18syl 17 . 2 (𝐺𝑉 → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
201, 19eqtrid 2780 1 (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  𝒫 cpw 4549  ran crn 5620  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  +gcplusg 17163  LSSumclsm 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-lsm 19550
This theorem is referenced by:  lsmvalx  19553  oppglsm  19556  lsmpropd  19591  rlmlsm  21141
  Copyright terms: Public domain W3C validator