MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmfval Structured version   Visualization version   GIF version

Theorem lsmfval 19500
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmfval (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
Distinct variable groups:   𝑢,𝑡,𝑥,𝑦, +   𝑡,𝐵,𝑢,𝑥,𝑦   𝑡,𝐺,𝑢,𝑥,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑢,𝑡)   𝑉(𝑥,𝑦,𝑢,𝑡)

Proof of Theorem lsmfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsmfval.s . 2 = (LSSum‘𝐺)
2 elex 3492 . . 3 (𝐺𝑉𝐺 ∈ V)
3 fveq2 6888 . . . . . . 7 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
4 lsmfval.v . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2790 . . . . . 6 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
65pweqd 4618 . . . . 5 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
7 fveq2 6888 . . . . . . . . 9 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
8 lsmfval.a . . . . . . . . 9 + = (+g𝐺)
97, 8eqtr4di 2790 . . . . . . . 8 (𝑤 = 𝐺 → (+g𝑤) = + )
109oveqd 7422 . . . . . . 7 (𝑤 = 𝐺 → (𝑥(+g𝑤)𝑦) = (𝑥 + 𝑦))
1110mpoeq3dv 7484 . . . . . 6 (𝑤 = 𝐺 → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
1211rneqd 5935 . . . . 5 (𝑤 = 𝐺 → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
136, 6, 12mpoeq123dv 7480 . . . 4 (𝑤 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
14 df-lsm 19498 . . . 4 LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))))
154fvexi 6902 . . . . . 6 𝐵 ∈ V
1615pwex 5377 . . . . 5 𝒫 𝐵 ∈ V
1716, 16mpoex 8062 . . . 4 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))) ∈ V
1813, 14, 17fvmpt 6995 . . 3 (𝐺 ∈ V → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
192, 18syl 17 . 2 (𝐺𝑉 → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
201, 19eqtrid 2784 1 (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  𝒫 cpw 4601  ran crn 5676  cfv 6540  (class class class)co 7405  cmpo 7407  Basecbs 17140  +gcplusg 17193  LSSumclsm 19496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-lsm 19498
This theorem is referenced by:  lsmvalx  19501  oppglsm  19504  lsmpropd  19539  rlmlsm  20821
  Copyright terms: Public domain W3C validator