| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmfval | Structured version Visualization version GIF version | ||
| Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmfval.a | ⊢ + = (+g‘𝐺) |
| lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmfval | ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.s | . 2 ⊢ ⊕ = (LSSum‘𝐺) | |
| 2 | elex 3480 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 3 | fveq2 6876 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) | |
| 4 | lsmfval.v | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵) |
| 6 | 5 | pweqd 4592 | . . . . 5 ⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵) |
| 7 | fveq2 6876 | . . . . . . . . 9 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = (+g‘𝐺)) | |
| 8 | lsmfval.a | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | eqtr4di 2788 | . . . . . . . 8 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = + ) |
| 10 | 9 | oveqd 7422 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (𝑥(+g‘𝑤)𝑦) = (𝑥 + 𝑦)) |
| 11 | 10 | mpoeq3dv 7486 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
| 12 | 11 | rneqd 5918 | . . . . 5 ⊢ (𝑤 = 𝐺 → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
| 13 | 6, 6, 12 | mpoeq123dv 7482 | . . . 4 ⊢ (𝑤 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| 14 | df-lsm 19617 | . . . 4 ⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) | |
| 15 | 4 | fvexi 6890 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 16 | 15 | pwex 5350 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
| 17 | 16, 16 | mpoex 8078 | . . . 4 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6986 | . . 3 ⊢ (𝐺 ∈ V → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| 19 | 2, 18 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝑉 → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| 20 | 1, 19 | eqtrid 2782 | 1 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 ran crn 5655 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17228 +gcplusg 17271 LSSumclsm 19615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-lsm 19617 |
| This theorem is referenced by: lsmvalx 19620 oppglsm 19623 lsmpropd 19658 rlmlsm 21163 |
| Copyright terms: Public domain | W3C validator |