| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmfval | Structured version Visualization version GIF version | ||
| Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmfval.a | ⊢ + = (+g‘𝐺) |
| lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmfval | ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.s | . 2 ⊢ ⊕ = (LSSum‘𝐺) | |
| 2 | elex 3459 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 3 | fveq2 6826 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) | |
| 4 | lsmfval.v | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵) |
| 6 | 5 | pweqd 4570 | . . . . 5 ⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵) |
| 7 | fveq2 6826 | . . . . . . . . 9 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = (+g‘𝐺)) | |
| 8 | lsmfval.a | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . . . 8 ⊢ (𝑤 = 𝐺 → (+g‘𝑤) = + ) |
| 10 | 9 | oveqd 7370 | . . . . . . 7 ⊢ (𝑤 = 𝐺 → (𝑥(+g‘𝑤)𝑦) = (𝑥 + 𝑦)) |
| 11 | 10 | mpoeq3dv 7432 | . . . . . 6 ⊢ (𝑤 = 𝐺 → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
| 12 | 11 | rneqd 5884 | . . . . 5 ⊢ (𝑤 = 𝐺 → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) |
| 13 | 6, 6, 12 | mpoeq123dv 7428 | . . . 4 ⊢ (𝑤 = 𝐺 → (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| 14 | df-lsm 19533 | . . . 4 ⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) | |
| 15 | 4 | fvexi 6840 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 16 | 15 | pwex 5322 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
| 17 | 16, 16 | mpoex 8021 | . . . 4 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6934 | . . 3 ⊢ (𝐺 ∈ V → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| 19 | 2, 18 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝑉 → (LSSum‘𝐺) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| 20 | 1, 19 | eqtrid 2776 | 1 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 𝒫 cpw 4553 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 +gcplusg 17179 LSSumclsm 19531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-lsm 19533 |
| This theorem is referenced by: lsmvalx 19536 oppglsm 19539 lsmpropd 19574 rlmlsm 21127 |
| Copyright terms: Public domain | W3C validator |