Detailed syntax breakdown of Definition df-plig
Step | Hyp | Ref
| Expression |
1 | | cplig 28836 |
. 2
class
Plig |
2 | | va |
. . . . . . . . 9
setvar 𝑎 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑎 |
4 | | vb |
. . . . . . . . 9
setvar 𝑏 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑏 |
6 | 3, 5 | wne 2943 |
. . . . . . 7
wff 𝑎 ≠ 𝑏 |
7 | | vl |
. . . . . . . . . 10
setvar 𝑙 |
8 | 2, 7 | wel 2107 |
. . . . . . . . 9
wff 𝑎 ∈ 𝑙 |
9 | 4, 7 | wel 2107 |
. . . . . . . . 9
wff 𝑏 ∈ 𝑙 |
10 | 8, 9 | wa 396 |
. . . . . . . 8
wff (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) |
11 | | vx |
. . . . . . . . 9
setvar 𝑥 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑥 |
13 | 10, 7, 12 | wreu 3066 |
. . . . . . 7
wff
∃!𝑙 ∈
𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) |
14 | 6, 13 | wi 4 |
. . . . . 6
wff (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) |
15 | 12 | cuni 4839 |
. . . . . 6
class ∪ 𝑥 |
16 | 14, 4, 15 | wral 3064 |
. . . . 5
wff
∀𝑏 ∈
∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) |
17 | 16, 2, 15 | wral 3064 |
. . . 4
wff
∀𝑎 ∈
∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) |
18 | 6, 8, 9 | w3a 1086 |
. . . . . . 7
wff (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) |
19 | 18, 4, 15 | wrex 3065 |
. . . . . 6
wff
∃𝑏 ∈
∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) |
20 | 19, 2, 15 | wrex 3065 |
. . . . 5
wff
∃𝑎 ∈
∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) |
21 | 20, 7, 12 | wral 3064 |
. . . 4
wff
∀𝑙 ∈
𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) |
22 | | vc |
. . . . . . . . . . 11
setvar 𝑐 |
23 | 22, 7 | wel 2107 |
. . . . . . . . . 10
wff 𝑐 ∈ 𝑙 |
24 | 8, 9, 23 | w3a 1086 |
. . . . . . . . 9
wff (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙) |
25 | 24 | wn 3 |
. . . . . . . 8
wff ¬
(𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙) |
26 | 25, 7, 12 | wral 3064 |
. . . . . . 7
wff
∀𝑙 ∈
𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙) |
27 | 26, 22, 15 | wrex 3065 |
. . . . . 6
wff
∃𝑐 ∈
∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙) |
28 | 27, 4, 15 | wrex 3065 |
. . . . 5
wff
∃𝑏 ∈
∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙) |
29 | 28, 2, 15 | wrex 3065 |
. . . 4
wff
∃𝑎 ∈
∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙) |
30 | 17, 21, 29 | w3a 1086 |
. . 3
wff
(∀𝑎 ∈
∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) |
31 | 30, 11 | cab 2715 |
. 2
class {𝑥 ∣ (∀𝑎 ∈ ∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))} |
32 | 1, 31 | wceq 1539 |
1
wff Plig =
{𝑥 ∣ (∀𝑎 ∈ ∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))} |