MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isplig Structured version   Visualization version   GIF version

Theorem isplig 30454
Description: The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009.)
Hypothesis
Ref Expression
isplig.1 𝑃 = 𝐺
Assertion
Ref Expression
isplig (𝐺𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑙,𝐺   𝑃,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑎,𝑏,𝑐,𝑙)   𝑃(𝑙)

Proof of Theorem isplig
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 4870 . . . . 5 (𝑥 = 𝐺 𝑥 = 𝐺)
2 isplig.1 . . . . 5 𝑃 = 𝐺
31, 2eqtr4di 2784 . . . 4 (𝑥 = 𝐺 𝑥 = 𝑃)
4 reueq1 3378 . . . . . 6 (𝑥 = 𝐺 → (∃!𝑙𝑥 (𝑎𝑙𝑏𝑙) ↔ ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)))
54imbi2d 340 . . . . 5 (𝑥 = 𝐺 → ((𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ↔ (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙))))
63, 5raleqbidv 3312 . . . 4 (𝑥 = 𝐺 → (∀𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ↔ ∀𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙))))
73, 6raleqbidv 3312 . . 3 (𝑥 = 𝐺 → (∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ↔ ∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙))))
83rexeqdv 3293 . . . . 5 (𝑥 = 𝐺 → (∃𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙)))
93, 8rexeqbidv 3313 . . . 4 (𝑥 = 𝐺 → (∃𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙)))
109raleqbi1dv 3304 . . 3 (𝑥 = 𝐺 → (∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙)))
11 raleq 3289 . . . . . 6 (𝑥 = 𝐺 → (∀𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∀𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
123, 11rexeqbidv 3313 . . . . 5 (𝑥 = 𝐺 → (∃𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
133, 12rexeqbidv 3313 . . . 4 (𝑥 = 𝐺 → (∃𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
143, 13rexeqbidv 3313 . . 3 (𝑥 = 𝐺 → (∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
157, 10, 143anbi123d 1438 . 2 (𝑥 = 𝐺 → ((∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
16 df-plig 30453 . 2 Plig = {𝑥 ∣ (∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))}
1715, 16elab2g 3636 1 (𝐺𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344   cuni 4859  Pligcplig 30452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-v 3438  df-ss 3919  df-uni 4860  df-plig 30453
This theorem is referenced by:  ispligb  30455  tncp  30456  l2p  30457  eulplig  30463
  Copyright terms: Public domain W3C validator