Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-plt | Structured version Visualization version GIF version |
Description: Define less-than ordering for posets and related structures. Unlike df-base 16922 and df-ple 16991, this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
df-plt | ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplt 18035 | . 2 class lt | |
2 | vp | . . 3 setvar 𝑝 | |
3 | cvv 3433 | . . 3 class V | |
4 | 2 | cv 1538 | . . . . 5 class 𝑝 |
5 | cple 16978 | . . . . 5 class le | |
6 | 4, 5 | cfv 6437 | . . . 4 class (le‘𝑝) |
7 | cid 5489 | . . . 4 class I | |
8 | 6, 7 | cdif 3885 | . . 3 class ((le‘𝑝) ∖ I ) |
9 | 2, 3, 8 | cmpt 5158 | . 2 class (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
10 | 1, 9 | wceq 1539 | 1 wff lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
Colors of variables: wff setvar class |
This definition is referenced by: pltfval 18058 |
Copyright terms: Public domain | W3C validator |