![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduposb | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | β’ π· = (ODualβπ) |
Ref | Expression |
---|---|
oduposb | β’ (π β π β (π β Poset β π· β Poset)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . 3 β’ π· = (ODualβπ) | |
2 | 1 | odupos 18281 | . 2 β’ (π β Poset β π· β Poset) |
3 | eqid 2733 | . . . 4 β’ (ODualβπ·) = (ODualβπ·) | |
4 | 3 | odupos 18281 | . . 3 β’ (π· β Poset β (ODualβπ·) β Poset) |
5 | fvexd 6907 | . . . 4 β’ (π β π β (ODualβπ·) β V) | |
6 | id 22 | . . . 4 β’ (π β π β π β π) | |
7 | eqid 2733 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
8 | 1, 7 | odubas 18244 | . . . . . 6 β’ (Baseβπ) = (Baseβπ·) |
9 | 3, 8 | odubas 18244 | . . . . 5 β’ (Baseβπ) = (Baseβ(ODualβπ·)) |
10 | 9 | a1i 11 | . . . 4 β’ (π β π β (Baseβπ) = (Baseβ(ODualβπ·))) |
11 | eqidd 2734 | . . . 4 β’ (π β π β (Baseβπ) = (Baseβπ)) | |
12 | eqid 2733 | . . . . . . . . . 10 β’ (leβπ) = (leβπ) | |
13 | 1, 12 | oduleval 18242 | . . . . . . . . 9 β’ β‘(leβπ) = (leβπ·) |
14 | 3, 13 | oduleval 18242 | . . . . . . . 8 β’ β‘β‘(leβπ) = (leβ(ODualβπ·)) |
15 | 14 | eqcomi 2742 | . . . . . . 7 β’ (leβ(ODualβπ·)) = β‘β‘(leβπ) |
16 | 15 | breqi 5155 | . . . . . 6 β’ (π(leβ(ODualβπ·))π β πβ‘β‘(leβπ)π) |
17 | vex 3479 | . . . . . . 7 β’ π β V | |
18 | vex 3479 | . . . . . . 7 β’ π β V | |
19 | 17, 18 | brcnv 5883 | . . . . . 6 β’ (πβ‘β‘(leβπ)π β πβ‘(leβπ)π) |
20 | 18, 17 | brcnv 5883 | . . . . . 6 β’ (πβ‘(leβπ)π β π(leβπ)π) |
21 | 16, 19, 20 | 3bitri 297 | . . . . 5 β’ (π(leβ(ODualβπ·))π β π(leβπ)π) |
22 | 21 | a1i 11 | . . . 4 β’ ((π β π β§ (π β (Baseβπ) β§ π β (Baseβπ))) β (π(leβ(ODualβπ·))π β π(leβπ)π)) |
23 | 5, 6, 10, 11, 22 | pospropd 18280 | . . 3 β’ (π β π β ((ODualβπ·) β Poset β π β Poset)) |
24 | 4, 23 | imbitrid 243 | . 2 β’ (π β π β (π· β Poset β π β Poset)) |
25 | 2, 24 | impbid2 225 | 1 β’ (π β π β (π β Poset β π· β Poset)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 class class class wbr 5149 β‘ccnv 5676 βcfv 6544 Basecbs 17144 lecple 17204 ODualcodu 18239 Posetcpo 18260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-dec 12678 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ple 17217 df-odu 18240 df-proset 18248 df-poset 18266 |
This theorem is referenced by: odulatb 18387 oduclatb 18460 |
Copyright terms: Public domain | W3C validator |