Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oduposb | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
oduposb | ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . 3 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | odupos 18091 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
3 | eqid 2736 | . . . 4 ⊢ (ODual‘𝐷) = (ODual‘𝐷) | |
4 | 3 | odupos 18091 | . . 3 ⊢ (𝐷 ∈ Poset → (ODual‘𝐷) ∈ Poset) |
5 | fvexd 6819 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (ODual‘𝐷) ∈ V) | |
6 | id 22 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) | |
7 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
8 | 1, 7 | odubas 18054 | . . . . . 6 ⊢ (Base‘𝑂) = (Base‘𝐷) |
9 | 3, 8 | odubas 18054 | . . . . 5 ⊢ (Base‘𝑂) = (Base‘(ODual‘𝐷)) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘(ODual‘𝐷))) |
11 | eqidd 2737 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘𝑂)) | |
12 | eqid 2736 | . . . . . . . . . 10 ⊢ (le‘𝑂) = (le‘𝑂) | |
13 | 1, 12 | oduleval 18052 | . . . . . . . . 9 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
14 | 3, 13 | oduleval 18052 | . . . . . . . 8 ⊢ ◡◡(le‘𝑂) = (le‘(ODual‘𝐷)) |
15 | 14 | eqcomi 2745 | . . . . . . 7 ⊢ (le‘(ODual‘𝐷)) = ◡◡(le‘𝑂) |
16 | 15 | breqi 5087 | . . . . . 6 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎◡◡(le‘𝑂)𝑏) |
17 | vex 3441 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
18 | vex 3441 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
19 | 17, 18 | brcnv 5804 | . . . . . 6 ⊢ (𝑎◡◡(le‘𝑂)𝑏 ↔ 𝑏◡(le‘𝑂)𝑎) |
20 | 18, 17 | brcnv 5804 | . . . . . 6 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
21 | 16, 19, 20 | 3bitri 297 | . . . . 5 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏) |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂))) → (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏)) |
23 | 5, 6, 10, 11, 22 | pospropd 18090 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ((ODual‘𝐷) ∈ Poset ↔ 𝑂 ∈ Poset)) |
24 | 4, 23 | syl5ib 244 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝐷 ∈ Poset → 𝑂 ∈ Poset)) |
25 | 2, 24 | impbid2 225 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 ◡ccnv 5599 ‘cfv 6458 Basecbs 16957 lecple 17014 ODualcodu 18049 Posetcpo 18070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-dec 12484 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ple 17027 df-odu 18050 df-proset 18058 df-poset 18076 |
This theorem is referenced by: odulatb 18197 oduclatb 18270 |
Copyright terms: Public domain | W3C validator |