MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduposb Structured version   Visualization version   GIF version

Theorem oduposb 17451
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
odupos.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
oduposb (𝑂𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))

Proof of Theorem oduposb
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odupos.d . . 3 𝐷 = (ODual‘𝑂)
21odupos 17450 . 2 (𝑂 ∈ Poset → 𝐷 ∈ Poset)
3 eqid 2799 . . . 4 (ODual‘𝐷) = (ODual‘𝐷)
43odupos 17450 . . 3 (𝐷 ∈ Poset → (ODual‘𝐷) ∈ Poset)
5 fvexd 6426 . . . 4 (𝑂𝑉 → (ODual‘𝐷) ∈ V)
6 id 22 . . . 4 (𝑂𝑉𝑂𝑉)
7 eqid 2799 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
81, 7odubas 17448 . . . . . 6 (Base‘𝑂) = (Base‘𝐷)
93, 8odubas 17448 . . . . 5 (Base‘𝑂) = (Base‘(ODual‘𝐷))
109a1i 11 . . . 4 (𝑂𝑉 → (Base‘𝑂) = (Base‘(ODual‘𝐷)))
11 eqidd 2800 . . . 4 (𝑂𝑉 → (Base‘𝑂) = (Base‘𝑂))
12 eqid 2799 . . . . . . . . . 10 (le‘𝑂) = (le‘𝑂)
131, 12oduleval 17446 . . . . . . . . 9 (le‘𝑂) = (le‘𝐷)
143, 13oduleval 17446 . . . . . . . 8 (le‘𝑂) = (le‘(ODual‘𝐷))
1514eqcomi 2808 . . . . . . 7 (le‘(ODual‘𝐷)) = (le‘𝑂)
1615breqi 4849 . . . . . 6 (𝑎(le‘(ODual‘𝐷))𝑏𝑎(le‘𝑂)𝑏)
17 vex 3388 . . . . . . 7 𝑎 ∈ V
18 vex 3388 . . . . . . 7 𝑏 ∈ V
1917, 18brcnv 5508 . . . . . 6 (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎)
2018, 17brcnv 5508 . . . . . 6 (𝑏(le‘𝑂)𝑎𝑎(le‘𝑂)𝑏)
2116, 19, 203bitri 289 . . . . 5 (𝑎(le‘(ODual‘𝐷))𝑏𝑎(le‘𝑂)𝑏)
2221a1i 11 . . . 4 ((𝑂𝑉 ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂))) → (𝑎(le‘(ODual‘𝐷))𝑏𝑎(le‘𝑂)𝑏))
235, 6, 10, 11, 22pospropd 17449 . . 3 (𝑂𝑉 → ((ODual‘𝐷) ∈ Poset ↔ 𝑂 ∈ Poset))
244, 23syl5ib 236 . 2 (𝑂𝑉 → (𝐷 ∈ Poset → 𝑂 ∈ Poset))
252, 24impbid2 218 1 (𝑂𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3385   class class class wbr 4843  ccnv 5311  cfv 6101  Basecbs 16184  lecple 16274  Posetcpo 17255  ODualcodu 17443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-dec 11784  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ple 16287  df-proset 17243  df-poset 17261  df-odu 17444
This theorem is referenced by:  odulatb  17458  oduclatb  17459
  Copyright terms: Public domain W3C validator