MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduposb Structured version   Visualization version   GIF version

Theorem oduposb 18387
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
odupos.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
oduposb (𝑂𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))

Proof of Theorem oduposb
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odupos.d . . 3 𝐷 = (ODual‘𝑂)
21odupos 18386 . 2 (𝑂 ∈ Poset → 𝐷 ∈ Poset)
3 eqid 2735 . . . 4 (ODual‘𝐷) = (ODual‘𝐷)
43odupos 18386 . . 3 (𝐷 ∈ Poset → (ODual‘𝐷) ∈ Poset)
5 fvexd 6922 . . . 4 (𝑂𝑉 → (ODual‘𝐷) ∈ V)
6 id 22 . . . 4 (𝑂𝑉𝑂𝑉)
7 eqid 2735 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
81, 7odubas 18348 . . . . . 6 (Base‘𝑂) = (Base‘𝐷)
93, 8odubas 18348 . . . . 5 (Base‘𝑂) = (Base‘(ODual‘𝐷))
109a1i 11 . . . 4 (𝑂𝑉 → (Base‘𝑂) = (Base‘(ODual‘𝐷)))
11 eqidd 2736 . . . 4 (𝑂𝑉 → (Base‘𝑂) = (Base‘𝑂))
12 eqid 2735 . . . . . . . . . 10 (le‘𝑂) = (le‘𝑂)
131, 12oduleval 18346 . . . . . . . . 9 (le‘𝑂) = (le‘𝐷)
143, 13oduleval 18346 . . . . . . . 8 (le‘𝑂) = (le‘(ODual‘𝐷))
1514eqcomi 2744 . . . . . . 7 (le‘(ODual‘𝐷)) = (le‘𝑂)
1615breqi 5154 . . . . . 6 (𝑎(le‘(ODual‘𝐷))𝑏𝑎(le‘𝑂)𝑏)
17 vex 3482 . . . . . . 7 𝑎 ∈ V
18 vex 3482 . . . . . . 7 𝑏 ∈ V
1917, 18brcnv 5896 . . . . . 6 (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎)
2018, 17brcnv 5896 . . . . . 6 (𝑏(le‘𝑂)𝑎𝑎(le‘𝑂)𝑏)
2116, 19, 203bitri 297 . . . . 5 (𝑎(le‘(ODual‘𝐷))𝑏𝑎(le‘𝑂)𝑏)
2221a1i 11 . . . 4 ((𝑂𝑉 ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂))) → (𝑎(le‘(ODual‘𝐷))𝑏𝑎(le‘𝑂)𝑏))
235, 6, 10, 11, 22pospropd 18385 . . 3 (𝑂𝑉 → ((ODual‘𝐷) ∈ Poset ↔ 𝑂 ∈ Poset))
244, 23imbitrid 244 . 2 (𝑂𝑉 → (𝐷 ∈ Poset → 𝑂 ∈ Poset))
252, 24impbid2 226 1 (𝑂𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148  ccnv 5688  cfv 6563  Basecbs 17245  lecple 17305  ODualcodu 18343  Posetcpo 18365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ple 17318  df-odu 18344  df-proset 18352  df-poset 18371
This theorem is referenced by:  odulatb  18492  oduclatb  18565
  Copyright terms: Public domain W3C validator