| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oduposb | Structured version Visualization version GIF version | ||
| Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
| Ref | Expression |
|---|---|
| oduposb | ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odupos.d | . . 3 ⊢ 𝐷 = (ODual‘𝑂) | |
| 2 | 1 | odupos 18287 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
| 3 | eqid 2729 | . . . 4 ⊢ (ODual‘𝐷) = (ODual‘𝐷) | |
| 4 | 3 | odupos 18287 | . . 3 ⊢ (𝐷 ∈ Poset → (ODual‘𝐷) ∈ Poset) |
| 5 | fvexd 6873 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (ODual‘𝐷) ∈ V) | |
| 6 | id 22 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 8 | 1, 7 | odubas 18252 | . . . . . 6 ⊢ (Base‘𝑂) = (Base‘𝐷) |
| 9 | 3, 8 | odubas 18252 | . . . . 5 ⊢ (Base‘𝑂) = (Base‘(ODual‘𝐷)) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘(ODual‘𝐷))) |
| 11 | eqidd 2730 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (Base‘𝑂) = (Base‘𝑂)) | |
| 12 | eqid 2729 | . . . . . . . . . 10 ⊢ (le‘𝑂) = (le‘𝑂) | |
| 13 | 1, 12 | oduleval 18250 | . . . . . . . . 9 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
| 14 | 3, 13 | oduleval 18250 | . . . . . . . 8 ⊢ ◡◡(le‘𝑂) = (le‘(ODual‘𝐷)) |
| 15 | 14 | eqcomi 2738 | . . . . . . 7 ⊢ (le‘(ODual‘𝐷)) = ◡◡(le‘𝑂) |
| 16 | 15 | breqi 5113 | . . . . . 6 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎◡◡(le‘𝑂)𝑏) |
| 17 | vex 3451 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 18 | vex 3451 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 19 | 17, 18 | brcnv 5846 | . . . . . 6 ⊢ (𝑎◡◡(le‘𝑂)𝑏 ↔ 𝑏◡(le‘𝑂)𝑎) |
| 20 | 18, 17 | brcnv 5846 | . . . . . 6 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
| 21 | 16, 19, 20 | 3bitri 297 | . . . . 5 ⊢ (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏) |
| 22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂))) → (𝑎(le‘(ODual‘𝐷))𝑏 ↔ 𝑎(le‘𝑂)𝑏)) |
| 23 | 5, 6, 10, 11, 22 | pospropd 18286 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ((ODual‘𝐷) ∈ Poset ↔ 𝑂 ∈ Poset)) |
| 24 | 4, 23 | imbitrid 244 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝐷 ∈ Poset → 𝑂 ∈ Poset)) |
| 25 | 2, 24 | impbid2 226 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ◡ccnv 5637 ‘cfv 6511 Basecbs 17179 lecple 17227 ODualcodu 18247 Posetcpo 18268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-dec 12650 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ple 17240 df-odu 18248 df-proset 18255 df-poset 18274 |
| This theorem is referenced by: odulatb 18393 oduclatb 18466 |
| Copyright terms: Public domain | W3C validator |