![]() |
Metamath
Proof Explorer Theorem List (p. 183 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | estrccat 18201 | The category of extensible structures is a category. (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | estrcid 18202 | The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) | ||
Theorem | estrchomfn 18203 | The Hom-set operation in the category of extensible structures (in a universe) is a function. (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑈 × 𝑈)) | ||
Theorem | estrchomfeqhom 18204 | The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = 𝐻) | ||
Theorem | estrreslem1 18205 | Lemma 1 for estrres 18208. (Contributed by AV, 14-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
Theorem | estrreslem1OLD 18206 | Obsolete version of estrreslem1 18205 as of 28-Oct-2024. Lemma 1 for estrres 18208. (Contributed by AV, 14-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
Theorem | estrreslem2 18207 | Lemma 2 for estrres 18208. (Contributed by AV, 14-Mar-2020.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → · ∈ 𝑌) ⇒ ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐶) | ||
Theorem | estrres 18208 | Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → · ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((𝐶 ↾s 𝐴) sSet 〈(Hom ‘ndx), 𝐺〉) = {〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | funcestrcsetclem1 18209* | Lemma 1 for funcestrcsetc 18218. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) | ||
Theorem | funcestrcsetclem2 18210* | Lemma 2 for funcestrcsetc 18218. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) | ||
Theorem | funcestrcsetclem3 18211* | Lemma 3 for funcestrcsetc 18218. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | ||
Theorem | funcestrcsetclem4 18212* | Lemma 4 for funcestrcsetc 18218. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) | ||
Theorem | funcestrcsetclem5 18213* | Lemma 5 for funcestrcsetc 18218. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ 𝑀 = (Base‘𝑋) & ⊢ 𝑁 = (Base‘𝑌) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) | ||
Theorem | funcestrcsetclem6 18214* | Lemma 6 for funcestrcsetc 18218. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ 𝑀 = (Base‘𝑋) & ⊢ 𝑁 = (Base‘𝑌) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
Theorem | funcestrcsetclem7 18215* | Lemma 7 for funcestrcsetc 18218. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
Theorem | funcestrcsetclem8 18216* | Lemma 8 for funcestrcsetc 18218. (Contributed by AV, 15-Feb-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) | ||
Theorem | funcestrcsetclem9 18217* | Lemma 9 for funcestrcsetc 18218. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
Theorem | funcestrcsetc 18218* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Func 𝑆)𝐺) | ||
Theorem | fthestrcsetc 18219* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Faith 𝑆)𝐺) | ||
Theorem | fullestrcsetc 18220* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Full 𝑆)𝐺) | ||
Theorem | equivestrcsetc 18221* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) | ||
Theorem | setc1strwun 18222 | A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) | ||
Theorem | funcsetcestrclem1 18223* | Lemma 1 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) | ||
Theorem | funcsetcestrclem2 18224* | Lemma 2 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ 𝑈) | ||
Theorem | funcsetcestrclem3 18225* | Lemma 3 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | ||
Theorem | embedsetcestrclem 18226* | Lemma for embedsetcestrc 18236. (Contributed by AV, 31-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) | ||
Theorem | funcsetcestrclem4 18227* | Lemma 4 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) | ||
Theorem | funcsetcestrclem5 18228* | Lemma 5 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) | ||
Theorem | funcsetcestrclem6 18229* | Lemma 6 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
Theorem | funcsetcestrclem7 18230* | Lemma 7 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) | ||
Theorem | funcsetcestrclem8 18231* | Lemma 8 for funcsetcestrc 18233. (Contributed by AV, 28-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) | ||
Theorem | funcsetcestrclem9 18232* | Lemma 9 for funcsetcestrc 18233. (Contributed by AV, 28-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
Theorem | funcsetcestrc 18233* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Func 𝐸)𝐺) | ||
Theorem | fthsetcestrc 18234* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Faith 𝐸)𝐺) | ||
Theorem | fullsetcestrc 18235* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Full 𝐸)𝐺) | ||
Theorem | embedsetcestrc 18236* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is an embedding. According to definition 3.27 (1) of [Adamek] p. 34, a functor "F is called an embedding provided that F is injective on morphisms", or according to remark 3.28 (1) in [Adamek] p. 34, "a functor is an embedding if and only if it is faithful and injective on objects". (Contributed by AV, 31-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → (𝐹(𝑆 Faith 𝐸)𝐺 ∧ 𝐹:𝐶–1-1→𝐵)) | ||
Syntax | cxpc 18237 | Extend class notation with the product of two categories. |
class ×c | ||
Syntax | c1stf 18238 | Extend class notation with the first projection functor. |
class 1stF | ||
Syntax | c2ndf 18239 | Extend class notation with the second projection functor. |
class 2ndF | ||
Syntax | cprf 18240 | Extend class notation with the functor pairing operation. |
class 〈,〉F | ||
Definition | df-xpc 18241* | Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) | ||
Definition | df-1stf 18242* | Define the first projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 1stF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) | ||
Definition | df-2ndf 18243* | Define the second projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) | ||
Definition | df-prf 18244* | Define the pairing operation for functors (which takes two functors 𝐹:𝐶⟶𝐷 and 𝐺:𝐶⟶𝐸 and produces (𝐹 〈,〉F 𝐺):𝐶⟶(𝐷 ×c 𝐸)). (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom (1st ‘𝑓) / 𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) | ||
Theorem | fnxpc 18245 | The binary product of categories is a two-argument function. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ ×c Fn (V × V) | ||
Theorem | xpcval 18246* | Value of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))) & ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉 · (1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉 ∙ (2nd ‘𝑦))(2nd ‘𝑓))〉))) ⇒ ⊢ (𝜑 → 𝑇 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐾〉, 〈(comp‘ndx), 𝑂〉}) | ||
Theorem | xpcbas 18247 | Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) ⇒ ⊢ (𝑋 × 𝑌) = (Base‘𝑇) | ||
Theorem | xpchomfval 18248* | Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) | ||
Theorem | xpchom 18249 | Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) | ||
Theorem | relxpchom 18250 | A hom-set in the binary product of categories is a relation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ Rel (𝑋𝐾𝑌) | ||
Theorem | xpccofval 18251* | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉 · (1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉 ∙ (2nd ‘𝑦))(2nd ‘𝑓))〉)) | ||
Theorem | xpcco 18252 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 ∙ (2nd ‘𝑍))(2nd ‘𝐹))〉) | ||
Theorem | xpcco1st 18253 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) | ||
Theorem | xpcco2nd 18254 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) & ⊢ · = (comp‘𝐷) ⇒ ⊢ (𝜑 → (2nd ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))) | ||
Theorem | xpchom2 18255 | Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑌) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) | ||
Theorem | xpcco2 18256 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑌) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝐹 ∈ (𝑀𝐻𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (𝑁𝐽𝑄)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃𝐻𝑅)) & ⊢ (𝜑 → 𝐿 ∈ (𝑄𝐽𝑆)) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝐾(〈𝑀, 𝑃〉 · 𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉 ∙ 𝑆)𝐺)〉) | ||
Theorem | xpccatid 18257* | The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ 𝐽 = (Id‘𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉))) | ||
Theorem | xpcid 18258 | The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ 𝐽 = (Id‘𝐷) & ⊢ 1 = (Id‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) ⇒ ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) | ||
Theorem | xpccat 18259 | The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑇 ∈ Cat) | ||
Theorem | 1stfval 18260* | Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) ⇒ ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) | ||
Theorem | 1stf1 18261 | Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = (1st ‘𝑅)) | ||
Theorem | 1stf2 18262 | Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑅(2nd ‘𝑃)𝑆) = (1st ↾ (𝑅𝐻𝑆))) | ||
Theorem | 2ndfval 18263* | Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) ⇒ ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) | ||
Theorem | 2ndf1 18264 | Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) | ||
Theorem | 2ndf2 18265 | Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) | ||
Theorem | 1stfcl 18266 | The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑇 Func 𝐶)) | ||
Theorem | 2ndfcl 18267 | The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) ⇒ ⊢ (𝜑 → 𝑄 ∈ (𝑇 Func 𝐷)) | ||
Theorem | prfval 18268* | Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) | ||
Theorem | prf1 18269 | Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) | ||
Theorem | prf2fval 18270* | Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉)) | ||
Theorem | prf2 18271 | Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) | ||
Theorem | prfcl 18272 | The pairing of functors 𝐹:𝐶⟶𝐷 and 𝐺:𝐶⟶𝐷 is a functor 〈𝐹, 𝐺〉:𝐶⟶(𝐷 × 𝐸). (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝑇 = (𝐷 ×c 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝐶 Func 𝑇)) | ||
Theorem | prf1st 18273 | Cancellation of pairing with first projection. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝑃) = 𝐹) | ||
Theorem | prf2nd 18274 | Cancellation of pairing with second projection. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺) | ||
Theorem | 1st2ndprf 18275 | Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝑇 = (𝐷 ×c 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝑇)) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) 〈,〉F ((𝐷 2ndF 𝐸) ∘func 𝐹))) | ||
Theorem | catcxpccl 18276 | The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑇 = (𝑋 ×c 𝑌) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
Theorem | catcxpcclOLD 18277 | Obsolete proof of catcxpccl 18276 as of 14-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑇 = (𝑋 ×c 𝑌) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
Theorem | xpcpropd 18278 | If two categories have the same set of objects, morphisms, and compositions, then they have the same product category. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷)) | ||
Syntax | cevlf 18279 | Extend class notation with the evaluation functor. |
class evalF | ||
Syntax | ccurf 18280 | Extend class notation with the currying of a functor. |
class curryF | ||
Syntax | cuncf 18281 | Extend class notation with the uncurrying of a functor. |
class uncurryF | ||
Syntax | cdiag 18282 | Extend class notation to include the diagonal functor. |
class Δfunc | ||
Definition | df-evlf 18283* | Define the evaluation functor, which is the extension of the evaluation map 𝑓, 𝑥 ↦ (𝑓‘𝑥) of functors, to a functor (𝐶⟶𝐷) × 𝐶⟶𝐷. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ evalF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 〈(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (Base‘𝑐) ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)), 𝑦 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝑐 Nat 𝑑)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝑑)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) | ||
Definition | df-curf 18284* | Define the curry functor, which maps a functor 𝐹:𝐶 × 𝐷⟶𝐸 to curryF (𝐹):𝐶⟶(𝐷⟶𝐸). (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ ⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd ‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉) | ||
Definition | df-uncf 18285* | Define the uncurry functor, which can be defined equationally using evalF. Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓 ∘func ((𝑐‘0) 1stF (𝑐‘1))) 〈,〉F ((𝑐‘0) 2ndF (𝑐‘1))))) | ||
Definition | df-diag 18286* | Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). The value of the functor at an object 𝑥 is the constant functor which maps all objects in 𝐷 to 𝑥 and all morphisms to 1(𝑥). The morphism part is a natural transformation between these functors, which takes 𝑓:𝑥⟶𝑦 to the natural transformation with every component equal to 𝑓. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑))) | ||
Theorem | evlfval 18287* | Value of the evaluation functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) ⇒ ⊢ (𝜑 → 𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd ‘𝑥)𝐻(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉 · ((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) | ||
Theorem | evlf2 18288* | Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) ⇒ ⊢ (𝜑 → 𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)))) | ||
Theorem | evlf2val 18289 | Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) | ||
Theorem | evlf1 18290 | Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) | ||
Theorem | evlfcllem 18291 | Lemma for evlfcl 18292. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝑍 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ∧ 𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌))) & ⊢ (𝜑 → (𝐵 ∈ (𝐺𝑁𝐻) ∧ 𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍))) ⇒ ⊢ (𝜑 → ((〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐻, 𝑍〉)‘(〈𝐵, 𝐿〉(〈〈𝐹, 𝑋〉, 〈𝐺, 𝑌〉〉(comp‘(𝑄 ×c 𝐶))〈𝐻, 𝑍〉)〈𝐴, 𝐾〉)) = (((〈𝐺, 𝑌〉(2nd ‘𝐸)〈𝐻, 𝑍〉)‘〈𝐵, 𝐿〉)(〈((1st ‘𝐸)‘〈𝐹, 𝑋〉), ((1st ‘𝐸)‘〈𝐺, 𝑌〉)〉(comp‘𝐷)((1st ‘𝐸)‘〈𝐻, 𝑍〉))((〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉)‘〈𝐴, 𝐾〉))) | ||
Theorem | evlfcl 18292 | The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐶⟶𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷)) | ||
Theorem | curfval 18293* | Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) ⇒ ⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) | ||
Theorem | curf1fval 18294* | Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) | ||
Theorem | curf1 18295* | Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) | ||
Theorem | curf11 18296 | Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) | ||
Theorem | curf12 18297 | The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻)) | ||
Theorem | curf1cl 18298 | The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) | ||
Theorem | curf2 18299* | Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) ⇒ ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)))) | ||
Theorem | curf2val 18300 | Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |