![]() |
Metamath
Proof Explorer Theorem List (p. 183 of 483) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30721) |
![]() (30722-32244) |
![]() (32245-48210) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-diag 18201* | Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). The value of the functor at an object 𝑥 is the constant functor which maps all objects in 𝐷 to 𝑥 and all morphisms to 1(𝑥). The morphism part is a natural transformation between these functors, which takes 𝑓:𝑥⟶𝑦 to the natural transformation with every component equal to 𝑓. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑))) | ||
Theorem | evlfval 18202* | Value of the evaluation functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) ⇒ ⊢ (𝜑 → 𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd ‘𝑥)𝐻(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉 · ((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) | ||
Theorem | evlf2 18203* | Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) ⇒ ⊢ (𝜑 → 𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)))) | ||
Theorem | evlf2val 18204 | Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) | ||
Theorem | evlf1 18205 | Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) | ||
Theorem | evlfcllem 18206 | Lemma for evlfcl 18207. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝑍 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ∧ 𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌))) & ⊢ (𝜑 → (𝐵 ∈ (𝐺𝑁𝐻) ∧ 𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍))) ⇒ ⊢ (𝜑 → ((〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐻, 𝑍〉)‘(〈𝐵, 𝐿〉(〈〈𝐹, 𝑋〉, 〈𝐺, 𝑌〉〉(comp‘(𝑄 ×c 𝐶))〈𝐻, 𝑍〉)〈𝐴, 𝐾〉)) = (((〈𝐺, 𝑌〉(2nd ‘𝐸)〈𝐻, 𝑍〉)‘〈𝐵, 𝐿〉)(〈((1st ‘𝐸)‘〈𝐹, 𝑋〉), ((1st ‘𝐸)‘〈𝐺, 𝑌〉)〉(comp‘𝐷)((1st ‘𝐸)‘〈𝐻, 𝑍〉))((〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉)‘〈𝐴, 𝐾〉))) | ||
Theorem | evlfcl 18207 | The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐶⟶𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷)) | ||
Theorem | curfval 18208* | Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) ⇒ ⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) | ||
Theorem | curf1fval 18209* | Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) | ||
Theorem | curf1 18210* | Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) | ||
Theorem | curf11 18211 | Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) | ||
Theorem | curf12 18212 | The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻)) | ||
Theorem | curf1cl 18213 | The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) | ||
Theorem | curf2 18214* | Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) ⇒ ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)))) | ||
Theorem | curf2val 18215 | Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) | ||
Theorem | curf2cl 18216 | The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) & ⊢ 𝑁 = (𝐷 Nat 𝐸) ⇒ ⊢ (𝜑 → 𝐿 ∈ (((1st ‘𝐺)‘𝑋)𝑁((1st ‘𝐺)‘𝑌))) | ||
Theorem | curfcl 18217 | The curry functor of a functor 𝐹:𝐶 × 𝐷⟶𝐸 is a functor curryF (𝐹):𝐶⟶(𝐷⟶𝐸). (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝑄 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝑄)) | ||
Theorem | curfpropd 18218 | If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ Cat) & ⊢ (𝜑 → 𝐵 ∈ Cat) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸)) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐶〉 curryF 𝐹) = (〈𝐵, 𝐷〉 curryF 𝐹)) | ||
Theorem | uncfval 18219 | Value of the uncurry functor, which is the reverse of the curry functor, taking 𝐺:𝐶⟶(𝐷⟶𝐸) to uncurryF (𝐺):𝐶 × 𝐷⟶𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) ⇒ ⊢ (𝜑 → 𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)))) | ||
Theorem | uncfcl 18220 | The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷⟶𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷⟶𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | ||
Theorem | uncf1 18221 | Value of the uncurry functor on an object. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋(1st ‘𝐹)𝑌) = ((1st ‘((1st ‘𝐺)‘𝑋))‘𝑌)) | ||
Theorem | uncf2 18222 | Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑍)) & ⊢ (𝜑 → 𝑆 ∈ (𝑌𝐽𝑊)) ⇒ ⊢ (𝜑 → (𝑅(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑍, 𝑊〉)𝑆) = ((((𝑋(2nd ‘𝐺)𝑍)‘𝑅)‘𝑊)(〈((1st ‘((1st ‘𝐺)‘𝑋))‘𝑌), ((1st ‘((1st ‘𝐺)‘𝑋))‘𝑊)〉(comp‘𝐸)((1st ‘((1st ‘𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st ‘𝐺)‘𝑋))𝑊)‘𝑆))) | ||
Theorem | curfuncf 18223 | Cancellation of curry with uncurry. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) ⇒ ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF 𝐹) = 𝐺) | ||
Theorem | uncfcurf 18224 | Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) ⇒ ⊢ (𝜑 → (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) = 𝐹) | ||
Theorem | diagval 18225 | Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐿 = (〈𝐶, 𝐷〉 curryF (𝐶 1stF 𝐷))) | ||
Theorem | diagcl 18226 | The diagonal functor is a functor from the base category to the functor category. Another way of saying this is that the constant functor (𝑦 ∈ 𝐷 ↦ 𝑋) is a construction that is natural in 𝑋 (and covariant). (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐷 FuncCat 𝐶) ⇒ ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func 𝑄)) | ||
Theorem | diag1cl 18227 | The constant functor of 𝑋 is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) | ||
Theorem | diag11 18228 | Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) | ||
Theorem | diag12 18229 | Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐹) = ( 1 ‘𝑋)) | ||
Theorem | diag2 18230 | Value of the diagonal functor at a morphism. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹})) | ||
Theorem | diag2cl 18231 | The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 𝑁 = (𝐷 Nat 𝐶) ⇒ ⊢ (𝜑 → (𝐵 × {𝐹}) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | ||
Theorem | curf2ndf 18232 | As shown in diagval 18225, the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑦), which is a constant functor of the identity functor at 𝐷. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑄 = (𝐷 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))) | ||
Syntax | chof 18233 | Extend class notation with the Hom functor. |
class HomF | ||
Syntax | cyon 18234 | Extend class notation with the Yoneda embedding. |
class Yon | ||
Definition | df-hof 18235* | Define the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from (oppCat‘𝐶) × 𝐶 to SetCat, whose object part is the hom-function Hom, and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ HomF = (𝑐 ∈ Cat ↦ 〈(Homf ‘𝑐), ⦋(Base‘𝑐) / 𝑏⦌(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝑐)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝑐)(2nd ‘𝑦))𝑓))))〉) | ||
Definition | df-yon 18236 | Define the Yoneda embedding, which is the currying of the (opposite) Hom functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐)))) | ||
Theorem | hofval 18237* | Value of the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from (oppCat‘𝐶) × 𝐶 to SetCat, whose object part is the hom-function Hom, and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → 𝑀 = 〈(Homf ‘𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st ‘𝑦)𝐻(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)𝐻(2nd ‘𝑦)) ↦ (ℎ ∈ (𝐻‘𝑥) ↦ ((𝑔(𝑥 · (2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉 · (2nd ‘𝑦))𝑓))))〉) | ||
Theorem | hof1fval 18238 | The object part of the Hom functor is the Homf operation, which is just a functionalized version of Hom. That is, it is a two argument function, which maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) | ||
Theorem | hof1 18239 | The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) | ||
Theorem | hof2fval 18240* | The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)))) | ||
Theorem | hof2val 18241* | The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) ⇒ ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) | ||
Theorem | hof2 18242 | The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺)‘𝐾) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) | ||
Theorem | hofcllem 18243 | Lemma for hofcl 18244. (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐷 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑊)) & ⊢ (𝜑 → 𝑃 ∈ (𝑆𝐻𝑍)) & ⊢ (𝜑 → 𝑄 ∈ (𝑊𝐻𝑇)) ⇒ ⊢ (𝜑 → ((𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃)(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑆, 𝑇〉)(𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)) = ((𝑃(〈𝑍, 𝑊〉(2nd ‘𝑀)〈𝑆, 𝑇〉)𝑄)(〈(𝑋𝐻𝑌), (𝑍𝐻𝑊)〉(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐿))) | ||
Theorem | hofcl 18244 | Closure of the Hom functor. Note that the codomain is the category SetCat‘𝑈 for any universe 𝑈 which contains each Hom-set. This corresponds to the assertion that 𝐶 be locally small (with respect to 𝑈). (Contributed by Mario Carneiro, 15-Jan-2017.) |
⊢ 𝑀 = (HomF‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐷 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷)) | ||
Theorem | oppchofcl 18245 | Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑀 = (HomF‘𝑂) & ⊢ 𝐷 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷)) | ||
Theorem | yonval 18246 | Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑀 = (HomF‘𝑂) ⇒ ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) | ||
Theorem | yoncl 18247 | The Yoneda embedding is a functor from the category to the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝑄)) | ||
Theorem | yon1cl 18248 | The Yoneda embedding at an object of 𝐶 is a presheaf on 𝐶, also known as the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((1st ‘𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) | ||
Theorem | yon11 18249 | Value of the Yoneda embedding at an object. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘((1st ‘𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋)) | ||
Theorem | yon12 18250 | Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑊𝐻𝑍)) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑋)) ⇒ ⊢ (𝜑 → (((𝑍(2nd ‘((1st ‘𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)) | ||
Theorem | yon2 18251 | Value of the Yoneda embedding at a morphism. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑍)) & ⊢ (𝜑 → 𝐺 ∈ (𝑊𝐻𝑋)) ⇒ ⊢ (𝜑 → ((((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊)‘𝐺) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) | ||
Theorem | hofpropd 18252 | If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (HomF‘𝐶) = (HomF‘𝐷)) | ||
Theorem | yonpropd 18253 | If two categories have the same set of objects, morphisms, and compositions, then they have the same Yoneda functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (Yon‘𝐶) = (Yon‘𝐷)) | ||
Theorem | oppcyon 18254 | Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑌 = (〈𝑂, 𝐶〉 curryF 𝑀)) | ||
Theorem | oyoncl 18255 | The opposite Yoneda embedding is a functor from oppCat‘𝐶 to the functor category 𝐶 → SetCat. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝑄 = (𝐶 FuncCat 𝑆) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑂 Func 𝑄)) | ||
Theorem | oyon1cl 18256 | The opposite Yoneda embedding at an object of 𝐶 is a functor from 𝐶 to Set, also known as the covariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑌)‘𝑋) ∈ (𝐶 Func 𝑆)) | ||
Theorem | yonedalem1 18257 | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 28-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) | ||
Theorem | yonedalem21 18258 | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 28-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(1st ‘𝑍)𝑋) = (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) | ||
Theorem | yonedalem3a 18259* | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st ‘𝑍)𝑋)⟶(𝐹(1st ‘𝐸)𝑋))) | ||
Theorem | yonedalem4a 18260* | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) ⇒ ⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) | ||
Theorem | yonedalem4b 18261* | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋)) ⇒ ⊢ (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴)) | ||
Theorem | yonedalem4c 18262* | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) ⇒ ⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) | ||
Theorem | yonedalem22 18263 | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) ⇒ ⊢ (𝜑 → (𝐴(〈𝐹, 𝑋〉(2nd ‘𝑍)〈𝐺, 𝑃〉)𝐾) = (((𝑃(2nd ‘𝑌)𝑋)‘𝐾)(〈((1st ‘𝑌)‘𝑋), 𝐹〉(2nd ‘𝐻)〈((1st ‘𝑌)‘𝑃), 𝐺〉)𝐴)) | ||
Theorem | yonedalem3b 18264* | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → ((𝐺𝑀𝑃)(〈(𝐹(1st ‘𝑍)𝑋), (𝐺(1st ‘𝑍)𝑃)〉(comp‘𝑇)(𝐺(1st ‘𝐸)𝑃))(𝐴(〈𝐹, 𝑋〉(2nd ‘𝑍)〈𝐺, 𝑃〉)𝐾)) = ((𝐴(〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑃〉)𝐾)(〈(𝐹(1st ‘𝑍)𝑋), (𝐹(1st ‘𝐸)𝑋)〉(comp‘𝑇)(𝐺(1st ‘𝐸)𝑃))(𝐹𝑀𝑋))) | ||
Theorem | yonedalem3 18265* | Lemma for yoneda 18268. (Contributed by Mario Carneiro, 28-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸)) | ||
Theorem | yonedainv 18266* | The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Inv‘𝑅) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) ⇒ ⊢ (𝜑 → 𝑀(𝑍𝐼𝐸)𝑁) | ||
Theorem | yonffthlem 18267* | Lemma for yonffth 18269. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Inv‘𝑅) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
Theorem | yoneda 18268* | The Yoneda Lemma. There is a natural isomorphism between the functors 𝑍 and 𝐸, where 𝑍(𝐹, 𝑋) is the natural transformations from Yon(𝑋) = Hom ( − , 𝑋) to 𝐹, and 𝐸(𝐹, 𝑋) = 𝐹(𝑋) is the evaluation functor. Here we need two universes to state the claim: the smaller universe 𝑈 is used for forming the functor category 𝑄 = 𝐶 op → SetCat(𝑈), which itself does not (necessarily) live in 𝑈 but instead is an element of the larger universe 𝑉. (If 𝑈 is a Grothendieck universe, then it will be closed under this "presheaf" operation, and so we can set 𝑈 = 𝑉 in this case.) (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Iso‘𝑅) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐼𝐸)) | ||
Theorem | yonffth 18269 | The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
Theorem | yoniso 18270* | If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐶 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐷 = (CatCat‘𝑉) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐼 = (Iso‘𝐷) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐸 = (𝑄 ↾s ran (1st ‘𝑌)) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝐶𝐼𝐸)) | ||
Syntax | codu 18271 | Class function defining dual orders. |
class ODual | ||
Definition | df-odu 18272 |
Define the dual of an ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18276, oduleval 18274,
and oduleg 18275 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18480. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) | ||
Theorem | oduval 18273 | Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) | ||
Theorem | oduleval 18274 | Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ ◡ ≤ = (le‘𝐷) | ||
Theorem | oduleg 18275 | Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) & ⊢ 𝐺 = (le‘𝐷) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝐺𝐵 ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | odubas 18276 | Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ 𝐵 = (Base‘𝐷) | ||
Theorem | odubasOLD 18277 | Obsolete proof of odubas 18276 as of 12-Nov-2024. Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ 𝐵 = (Base‘𝐷) | ||
Syntax | cproset 18278 | Extend class notation with the class of all prosets. |
class Proset | ||
Syntax | cdrs 18279 | Extend class notation with the class of all directed sets. |
class Dirset | ||
Definition | df-proset 18280* |
Define the class of preordered sets, or prosets. A proset is a set
equipped with a preorder, that is, a transitive and reflexive relation.
Preorders are a natural generalization of partial orders which need not be antisymmetric: there may be pairs of elements such that each is "less than or equal to" the other, so that both elements have the same order-theoretic properties (in some sense, there is a "tie" among them). If a preorder is required to be antisymmetric, that is, there is no such "tie", then one obtains a partial order. If a preorder is required to be symmetric, that is, all comparable elements are tied, then one obtains an equivalence relation. Every preorder naturally factors into these two notions: the "tie" relation on a proset is an equivalence relation, and the quotient under that equivalence relation is a partial order. (Contributed by FL, 17-Nov-2014.) (Revised by Stefan O'Rear, 31-Jan-2015.) |
⊢ Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
Definition | df-drs 18281* |
Define the class of directed sets. A directed set is a nonempty
preordered set where every pair of elements have some upper bound. Note
that it is not required that there exist a least upper bound.
There is no consensus in the literature over whether directed sets are allowed to be empty. It is slightly more convenient for us if they are not. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))} | ||
Theorem | isprs 18282* | Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | prslem 18283 | Lemma for prsref 18284 and prstr 18285. (Contributed by Mario Carneiro, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
Theorem | prsref 18284 | "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
Theorem | prstr 18285 | "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍)) → 𝑋 ≤ 𝑍) | ||
Theorem | isdrs 18286* | Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) | ||
Theorem | drsdir 18287* | Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) | ||
Theorem | drsprs 18288 | A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) | ||
Theorem | drsbn0 18289 | The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) | ||
Theorem | drsdirfi 18290* | Any finite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs 18281 first comes into play; without it we would need an additional constraint that 𝑋 not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ∧ 𝑋 ∈ Fin) → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑦) | ||
Theorem | isdrs2 18291* | Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑦)) | ||
Syntax | cpo 18292 | Extend class notation with the class of posets. |
class Poset | ||
Syntax | cplt 18293 | Extend class notation with less-than for posets. |
class lt | ||
Syntax | club 18294 | Extend class notation with poset least upper bound. |
class lub | ||
Syntax | cglb 18295 | Extend class notation with poset greatest lower bound. |
class glb | ||
Syntax | cjn 18296 | Extend class notation with poset join. |
class join | ||
Syntax | cmee 18297 | Extend class notation with poset meet. |
class meet | ||
Definition | df-poset 18298* |
Define the class of partially ordered sets (posets). A poset is a set
equipped with a partial order, that is, a binary relation which is
reflexive, antisymmetric, and transitive. Unlike a total order, in a
partial order there may be pairs of elements where neither precedes the
other. Definition of poset in [Crawley] p. 1. Note that
Crawley-Dilworth require that a poset base set be nonempty, but we
follow the convention of most authors who don't make this a requirement.
In our formalism of extensible structures, the base set of a poset 𝑓 is denoted by (Base‘𝑓) and its partial order by (le‘𝑓) (for "less than or equal to"). The quantifiers ∃𝑏∃𝑟 provide a notational shorthand to allow to refer to the base and ordering relation as 𝑏 and 𝑟 in the definition rather than having to repeat (Base‘𝑓) and (le‘𝑓) throughout. These quantifiers can be eliminated with ceqsex2v 3526 and related theorems. (Contributed by NM, 18-Oct-2012.) |
⊢ Poset = {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} | ||
Theorem | ispos 18299* | The predicate "is a poset". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | ispos2 18300* |
A poset is an antisymmetric proset.
EDITORIAL: could become the definition of poset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |