| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltfval | Structured version Visualization version GIF version | ||
| Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltfval | ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.s | . 2 ⊢ < = (lt‘𝐾) | |
| 2 | elex 3458 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
| 3 | fveq2 6828 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) | |
| 4 | pltval.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2786 | . . . . 5 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
| 6 | 5 | difeq1d 4074 | . . . 4 ⊢ (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ≤ ∖ I )) |
| 7 | df-plt 18236 | . . . 4 ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | |
| 8 | 4 | fvexi 6842 | . . . . 5 ⊢ ≤ ∈ V |
| 9 | 8 | difexi 5270 | . . . 4 ⊢ ( ≤ ∖ I ) ∈ V |
| 10 | 6, 7, 9 | fvmpt 6935 | . . 3 ⊢ (𝐾 ∈ V → (lt‘𝐾) = ( ≤ ∖ I )) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝐾 ∈ 𝐴 → (lt‘𝐾) = ( ≤ ∖ I )) |
| 12 | 1, 11 | eqtrid 2780 | 1 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 I cid 5513 ‘cfv 6486 lecple 17170 ltcplt 18216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-plt 18236 |
| This theorem is referenced by: pltval 18238 oppglt 19282 relt 21554 opsrtoslem2 21992 xrslt 32995 submarchi 33162 |
| Copyright terms: Public domain | W3C validator |