MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltfval Structured version   Visualization version   GIF version

Theorem pltfval 18341
Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltfval (𝐾𝐴< = ( ∖ I ))

Proof of Theorem pltfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pltval.s . 2 < = (lt‘𝐾)
2 elex 3480 . . 3 (𝐾𝐴𝐾 ∈ V)
3 fveq2 6876 . . . . . 6 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
4 pltval.l . . . . . 6 = (le‘𝐾)
53, 4eqtr4di 2788 . . . . 5 (𝑝 = 𝐾 → (le‘𝑝) = )
65difeq1d 4100 . . . 4 (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ∖ I ))
7 df-plt 18340 . . . 4 lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I ))
84fvexi 6890 . . . . 5 ∈ V
98difexi 5300 . . . 4 ( ∖ I ) ∈ V
106, 7, 9fvmpt 6986 . . 3 (𝐾 ∈ V → (lt‘𝐾) = ( ∖ I ))
112, 10syl 17 . 2 (𝐾𝐴 → (lt‘𝐾) = ( ∖ I ))
121, 11eqtrid 2782 1 (𝐾𝐴< = ( ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923   I cid 5547  cfv 6531  lecple 17278  ltcplt 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-plt 18340
This theorem is referenced by:  pltval  18342  relt  21575  opsrtoslem2  22014  oppglt  32943  xrslt  32999  submarchi  33184
  Copyright terms: Public domain W3C validator