MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltfval Structured version   Visualization version   GIF version

Theorem pltfval 18232
Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltfval (𝐾𝐴< = ( ∖ I ))

Proof of Theorem pltfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pltval.s . 2 < = (lt‘𝐾)
2 elex 3457 . . 3 (𝐾𝐴𝐾 ∈ V)
3 fveq2 6822 . . . . . 6 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
4 pltval.l . . . . . 6 = (le‘𝐾)
53, 4eqtr4di 2784 . . . . 5 (𝑝 = 𝐾 → (le‘𝑝) = )
65difeq1d 4075 . . . 4 (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ∖ I ))
7 df-plt 18231 . . . 4 lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I ))
84fvexi 6836 . . . . 5 ∈ V
98difexi 5268 . . . 4 ( ∖ I ) ∈ V
106, 7, 9fvmpt 6929 . . 3 (𝐾 ∈ V → (lt‘𝐾) = ( ∖ I ))
112, 10syl 17 . 2 (𝐾𝐴 → (lt‘𝐾) = ( ∖ I ))
121, 11eqtrid 2778 1 (𝐾𝐴< = ( ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899   I cid 5510  cfv 6481  lecple 17165  ltcplt 18211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-plt 18231
This theorem is referenced by:  pltval  18233  oppglt  19278  relt  21550  opsrtoslem2  21989  xrslt  32983  submarchi  33150
  Copyright terms: Public domain W3C validator