| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltfval | Structured version Visualization version GIF version | ||
| Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltfval | ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.s | . 2 ⊢ < = (lt‘𝐾) | |
| 2 | elex 3468 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
| 3 | fveq2 6858 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) | |
| 4 | pltval.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . 5 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
| 6 | 5 | difeq1d 4088 | . . . 4 ⊢ (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ≤ ∖ I )) |
| 7 | df-plt 18289 | . . . 4 ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | |
| 8 | 4 | fvexi 6872 | . . . . 5 ⊢ ≤ ∈ V |
| 9 | 8 | difexi 5285 | . . . 4 ⊢ ( ≤ ∖ I ) ∈ V |
| 10 | 6, 7, 9 | fvmpt 6968 | . . 3 ⊢ (𝐾 ∈ V → (lt‘𝐾) = ( ≤ ∖ I )) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝐾 ∈ 𝐴 → (lt‘𝐾) = ( ≤ ∖ I )) |
| 12 | 1, 11 | eqtrid 2776 | 1 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 I cid 5532 ‘cfv 6511 lecple 17227 ltcplt 18269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-plt 18289 |
| This theorem is referenced by: pltval 18291 relt 21524 opsrtoslem2 21963 oppglt 32889 xrslt 32945 submarchi 33140 |
| Copyright terms: Public domain | W3C validator |