Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltfval | Structured version Visualization version GIF version |
Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pltval.l | ⊢ ≤ = (le‘𝐾) |
pltval.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltfval | ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.s | . 2 ⊢ < = (lt‘𝐾) | |
2 | elex 3428 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
3 | fveq2 6663 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) | |
4 | pltval.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
5 | 3, 4 | eqtr4di 2811 | . . . . 5 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
6 | 5 | difeq1d 4029 | . . . 4 ⊢ (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ≤ ∖ I )) |
7 | df-plt 17647 | . . . 4 ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | |
8 | 4 | fvexi 6677 | . . . . 5 ⊢ ≤ ∈ V |
9 | 8 | difexi 5202 | . . . 4 ⊢ ( ≤ ∖ I ) ∈ V |
10 | 6, 7, 9 | fvmpt 6764 | . . 3 ⊢ (𝐾 ∈ V → (lt‘𝐾) = ( ≤ ∖ I )) |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝐾 ∈ 𝐴 → (lt‘𝐾) = ( ≤ ∖ I )) |
12 | 1, 11 | syl5eq 2805 | 1 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∖ cdif 3857 I cid 5433 ‘cfv 6340 lecple 16643 ltcplt 17630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-plt 17647 |
This theorem is referenced by: pltval 17649 relt 20393 opsrtoslem2 20829 oppglt 30775 xrslt 30823 submarchi 30978 |
Copyright terms: Public domain | W3C validator |