MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltfval Structured version   Visualization version   GIF version

Theorem pltfval 18401
Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltfval (𝐾𝐴< = ( ∖ I ))

Proof of Theorem pltfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pltval.s . 2 < = (lt‘𝐾)
2 elex 3509 . . 3 (𝐾𝐴𝐾 ∈ V)
3 fveq2 6920 . . . . . 6 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
4 pltval.l . . . . . 6 = (le‘𝐾)
53, 4eqtr4di 2798 . . . . 5 (𝑝 = 𝐾 → (le‘𝑝) = )
65difeq1d 4148 . . . 4 (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ∖ I ))
7 df-plt 18400 . . . 4 lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I ))
84fvexi 6934 . . . . 5 ∈ V
98difexi 5348 . . . 4 ( ∖ I ) ∈ V
106, 7, 9fvmpt 7029 . . 3 (𝐾 ∈ V → (lt‘𝐾) = ( ∖ I ))
112, 10syl 17 . 2 (𝐾𝐴 → (lt‘𝐾) = ( ∖ I ))
121, 11eqtrid 2792 1 (𝐾𝐴< = ( ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973   I cid 5592  cfv 6573  lecple 17318  ltcplt 18378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-plt 18400
This theorem is referenced by:  pltval  18402  relt  21656  opsrtoslem2  22103  oppglt  32935  xrslt  32990  submarchi  33166
  Copyright terms: Public domain W3C validator