| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltfval | Structured version Visualization version GIF version | ||
| Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltfval | ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.s | . 2 ⊢ < = (lt‘𝐾) | |
| 2 | elex 3480 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
| 3 | fveq2 6876 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) | |
| 4 | pltval.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . . 5 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
| 6 | 5 | difeq1d 4100 | . . . 4 ⊢ (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ≤ ∖ I )) |
| 7 | df-plt 18340 | . . . 4 ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | |
| 8 | 4 | fvexi 6890 | . . . . 5 ⊢ ≤ ∈ V |
| 9 | 8 | difexi 5300 | . . . 4 ⊢ ( ≤ ∖ I ) ∈ V |
| 10 | 6, 7, 9 | fvmpt 6986 | . . 3 ⊢ (𝐾 ∈ V → (lt‘𝐾) = ( ≤ ∖ I )) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝐾 ∈ 𝐴 → (lt‘𝐾) = ( ≤ ∖ I )) |
| 12 | 1, 11 | eqtrid 2782 | 1 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 I cid 5547 ‘cfv 6531 lecple 17278 ltcplt 18320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-plt 18340 |
| This theorem is referenced by: pltval 18342 relt 21575 opsrtoslem2 22014 oppglt 32943 xrslt 32999 submarchi 33184 |
| Copyright terms: Public domain | W3C validator |