MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltfval Structured version   Visualization version   GIF version

Theorem pltfval 18049
Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltfval (𝐾𝐴< = ( ∖ I ))

Proof of Theorem pltfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pltval.s . 2 < = (lt‘𝐾)
2 elex 3450 . . 3 (𝐾𝐴𝐾 ∈ V)
3 fveq2 6774 . . . . . 6 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
4 pltval.l . . . . . 6 = (le‘𝐾)
53, 4eqtr4di 2796 . . . . 5 (𝑝 = 𝐾 → (le‘𝑝) = )
65difeq1d 4056 . . . 4 (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ∖ I ))
7 df-plt 18048 . . . 4 lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I ))
84fvexi 6788 . . . . 5 ∈ V
98difexi 5252 . . . 4 ( ∖ I ) ∈ V
106, 7, 9fvmpt 6875 . . 3 (𝐾 ∈ V → (lt‘𝐾) = ( ∖ I ))
112, 10syl 17 . 2 (𝐾𝐴 → (lt‘𝐾) = ( ∖ I ))
121, 11eqtrid 2790 1 (𝐾𝐴< = ( ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884   I cid 5488  cfv 6433  lecple 16969  ltcplt 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-plt 18048
This theorem is referenced by:  pltval  18050  relt  20820  opsrtoslem2  21263  oppglt  31240  xrslt  31285  submarchi  31440
  Copyright terms: Public domain W3C validator