Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltfval | Structured version Visualization version GIF version |
Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pltval.l | ⊢ ≤ = (le‘𝐾) |
pltval.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltfval | ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.s | . 2 ⊢ < = (lt‘𝐾) | |
2 | elex 3450 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
3 | fveq2 6774 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾)) | |
4 | pltval.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
5 | 3, 4 | eqtr4di 2796 | . . . . 5 ⊢ (𝑝 = 𝐾 → (le‘𝑝) = ≤ ) |
6 | 5 | difeq1d 4056 | . . . 4 ⊢ (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ≤ ∖ I )) |
7 | df-plt 18048 | . . . 4 ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | |
8 | 4 | fvexi 6788 | . . . . 5 ⊢ ≤ ∈ V |
9 | 8 | difexi 5252 | . . . 4 ⊢ ( ≤ ∖ I ) ∈ V |
10 | 6, 7, 9 | fvmpt 6875 | . . 3 ⊢ (𝐾 ∈ V → (lt‘𝐾) = ( ≤ ∖ I )) |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝐾 ∈ 𝐴 → (lt‘𝐾) = ( ≤ ∖ I )) |
12 | 1, 11 | eqtrid 2790 | 1 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 I cid 5488 ‘cfv 6433 lecple 16969 ltcplt 18026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-plt 18048 |
This theorem is referenced by: pltval 18050 relt 20820 opsrtoslem2 21263 oppglt 31240 xrslt 31285 submarchi 31440 |
Copyright terms: Public domain | W3C validator |