Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ply1 Structured version   Visualization version   GIF version

Definition df-ply1 20911
 Description: Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
df-ply1 Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))

Detailed syntax breakdown of Definition df-ply1
StepHypRef Expression
1 cpl1 20906 . 2 class Poly1
2 vr . . 3 setvar 𝑟
3 cvv 3409 . . 3 class V
42cv 1537 . . . . 5 class 𝑟
5 cps1 20904 . . . . 5 class PwSer1
64, 5cfv 6339 . . . 4 class (PwSer1𝑟)
7 c1o 8110 . . . . . 6 class 1o
8 cmpl 20673 . . . . . 6 class mPoly
97, 4, 8co 7155 . . . . 5 class (1o mPoly 𝑟)
10 cbs 16546 . . . . 5 class Base
119, 10cfv 6339 . . . 4 class (Base‘(1o mPoly 𝑟))
12 cress 16547 . . . 4 class s
136, 11, 12co 7155 . . 3 class ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟)))
142, 3, 13cmpt 5115 . 2 class (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
151, 14wceq 1538 1 wff Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
 Colors of variables: wff setvar class This definition is referenced by:  ply1val  20923
 Copyright terms: Public domain W3C validator