| Metamath
Proof Explorer Theorem List (p. 220 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | psrridm 21901* | The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ · = (.r‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑈) = 𝑋) | ||
| Theorem | psrass1 21902* | Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ × = (.r‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍))) | ||
| Theorem | psrdi 21903* | Distributive law for the ring of power series (left-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ × = (.r‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → (𝑋 × (𝑌 + 𝑍)) = ((𝑋 × 𝑌) + (𝑋 × 𝑍))) | ||
| Theorem | psrdir 21904* | Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ × = (.r‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍))) | ||
| Theorem | psrass23l 21905* | Associative identity for the ring of power series. Part of psrass23 21907 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ × = (.r‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) | ||
| Theorem | psrcom 21906* | Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ × = (.r‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋)) | ||
| Theorem | psrass23 21907* | Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 25-Nov-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ × = (.r‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) ⇒ ⊢ (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) | ||
| Theorem | psrring 21908 | The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑆 ∈ Ring) | ||
| Theorem | psr1 21909* | The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (1r‘𝑆) ⇒ ⊢ (𝜑 → 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) | ||
| Theorem | psrcrng 21910 | The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑆 ∈ CRing) | ||
| Theorem | psrassa 21911 | The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑆 ∈ AssAlg) | ||
| Theorem | resspsrbas 21912 | A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPwSer 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) | ||
| Theorem | resspsradd 21913 | A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPwSer 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) | ||
| Theorem | resspsrmul 21914 | A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPwSer 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) | ||
| Theorem | resspsrvsca 21915 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPwSer 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) | ||
| Theorem | subrgpsr 21916 | A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPwSer 𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) | ||
| Theorem | psrascl 21917* | Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) | ||
| Theorem | psrasclcl 21918 | A scalar is lifted into a member of the power series. (Contributed by SN, 25-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ 𝐵) | ||
| Theorem | mvrfval 21919* | Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑉 = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)), 1 , 0 )))) | ||
| Theorem | mvrval 21920* | Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) | ||
| Theorem | mvrval2 21921* | Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) | ||
| Theorem | mvrid 21922* | The 𝑋𝑖-th coefficient of the term 𝑋𝑖 is 1. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝑉‘𝑋)‘(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 ) | ||
| Theorem | mvrf 21923 | The power series variable function is a function from the index set to elements of the power series structure representing 𝑋𝑖 for each 𝑖. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) | ||
| Theorem | mvrf1 21924 | The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 1 ≠ 0 ) ⇒ ⊢ (𝜑 → 𝑉:𝐼–1-1→𝐵) | ||
| Theorem | mvrcl2 21925 | A power series variable is an element of the base set. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑉‘𝑋) ∈ 𝐵) | ||
| Theorem | reldmmpl 21926 | The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ Rel dom mPoly | ||
| Theorem | mplval 21927* | Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⇒ ⊢ 𝑃 = (𝑆 ↾s 𝑈) | ||
| Theorem | mplbas 21928* | Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | ||
| Theorem | mplelbas 21929 | Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 )) | ||
| Theorem | mvrcl 21930 | A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑉‘𝑋) ∈ 𝐵) | ||
| Theorem | mvrf2 21931 | The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) | ||
| Theorem | mplrcl 21932 | Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) | ||
| Theorem | mplelsfi 21933 | A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
| Theorem | mplval2 21934 | Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ 𝑃 = (𝑆 ↾s 𝑈) | ||
| Theorem | mplbasss 21935 | The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ 𝑈 ⊆ 𝐵 | ||
| Theorem | mplelf 21936* | A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) | ||
| Theorem | mplsubglem 21937* | If 𝐴 is an ideal of sets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | ||
| Theorem | mpllsslem 21938* | If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) | ||
| Theorem | mplsubglem2 21939* | Lemma for mplsubg 21940 and mpllss 21941. (Contributed by AV, 16-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g‘𝑅)) ∈ Fin}) | ||
| Theorem | mplsubg 21940 | The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | ||
| Theorem | mpllss 21941 | The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) | ||
| Theorem | mplsubrglem 21942* | Lemma for mplsubrg 21943. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋(.r‘𝑆)𝑌) ∈ 𝑈) | ||
| Theorem | mplsubrg 21943 | The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) | ||
| Theorem | mpl0 21944* | The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) | ||
| Theorem | mplplusg 21945 | Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ + = (+g‘𝑆) | ||
| Theorem | mplmulr 21946 | Value of multiplication in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ · = (.r‘𝑌) ⇒ ⊢ · = (.r‘𝑆) | ||
| Theorem | mpladd 21947 | The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
| Theorem | mplneg 21948 | The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝑀 = (invg‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) | ||
| Theorem | mplmul 21949* | The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑃) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) | ||
| Theorem | mpl1 21950* | The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (1r‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) | ||
| Theorem | mplsca 21951 | The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) | ||
| Theorem | mplvsca2 21952 | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ · = ( ·𝑠 ‘𝑆) | ||
| Theorem | mplvsca 21953* | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) | ||
| Theorem | mplvscaval 21954* | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) | ||
| Theorem | mplgrp 21955 | The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) | ||
| Theorem | mpllmod 21956 | The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) | ||
| Theorem | mplring 21957 | The polynomial ring is a ring. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) | ||
| Theorem | mpllvec 21958 | The polynomial ring is a vector space. (Contributed by SN, 29-Feb-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing) → 𝑃 ∈ LVec) | ||
| Theorem | mplcrng 21959 | The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) | ||
| Theorem | mplassa 21960 | The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) | ||
| Theorem | mplringd 21961 | The polynomial ring is a ring. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑃 ∈ Ring) | ||
| Theorem | mpllmodd 21962 | The polynomial ring is a left module. (Contributed by SN, 12-Mar-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑃 ∈ LMod) | ||
| Theorem | ressmplbas2 21963 | The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑊 = (𝐼 mPwSer 𝐻) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) | ||
| Theorem | ressmplbas 21964 | A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) | ||
| Theorem | ressmpladd 21965 | A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) | ||
| Theorem | ressmplmul 21966 | A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) | ||
| Theorem | ressmplvsca 21967 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) | ||
| Theorem | subrgmpl 21968 | A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) | ||
| Theorem | subrgmvr 21969 | The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) ⇒ ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) | ||
| Theorem | subrgmvrf 21970 | The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) | ||
| Theorem | mplmon 21971* | A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) | ||
| Theorem | mplmonmul 21972* | The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors 〈2, 2, 0〉 and 〈0, 1, 3〉 are added to give 〈2, 3, 3〉. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 ))) | ||
| Theorem | mplcoe1 21973* | Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) | ||
| Theorem | mplcoe3 21974* | Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 18-Jul-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋))) | ||
| Theorem | mplcoe5lem 21975* | Lemma for mplcoe4 22007. (Contributed by AV, 7-Oct-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) & ⊢ (𝜑 → 𝑆 ⊆ 𝐼) ⇒ ⊢ (𝜑 → ran (𝑘 ∈ 𝑆 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝑆 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
| Theorem | mplcoe5 21976* | Decompose a monomial into a finite product of powers of variables. Instead of assuming that 𝑅 is a commutative ring (as in mplcoe2 21977), it is sufficient that 𝑅 is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
| Theorem | mplcoe2 21977* | Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
| Theorem | mplbas2 21978 | An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐴 = (AlgSpan‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃)) | ||
| Theorem | ltbval 21979* | Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) | ||
| Theorem | ltbwe 21980* | The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.) |
| ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 We 𝐼) ⇒ ⊢ (𝜑 → 𝐶 We 𝐷) | ||
| Theorem | reldmopsr 21981 | Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
| ⊢ Rel dom ordPwSer | ||
| Theorem | opsrval 21982* | The value of the "ordered power series" function. This is the same as mPwSer psrval 21854, but with the addition of a well-order on 𝐼 we can turn a strict order on 𝑅 into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) | ||
| Theorem | opsrle 21983* | An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ ≤ = (le‘𝑂) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) | ||
| Theorem | opsrval2 21984 | Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ ≤ = (le‘𝑂) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) | ||
| Theorem | opsrbaslem 21985 | Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (le‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) | ||
| Theorem | opsrbas 21986 | The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) | ||
| Theorem | opsrplusg 21987 | The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑂)) | ||
| Theorem | opsrmulr 21988 | The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑂)) | ||
| Theorem | opsrvsca 21989 | The scalar product operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑂)) | ||
| Theorem | opsrsca 21990 | The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑂)) | ||
| Theorem | opsrtoslem1 21991* | Lemma for opsrtos 21993. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ (𝜑 → ≤ = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) | ||
| Theorem | opsrtoslem2 21992* | Lemma for opsrtos 21993. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ (𝜑 → 𝑂 ∈ Toset) | ||
| Theorem | opsrtos 21993 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) ⇒ ⊢ (𝜑 → 𝑂 ∈ Toset) | ||
| Theorem | opsrso 21994 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ ≤ = (lt‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ (𝜑 → ≤ Or 𝐵) | ||
| Theorem | opsrcrng 21995 | The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ CRing) | ||
| Theorem | opsrassa 21996 | The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ AssAlg) | ||
| Theorem | mplmon2 21997* | Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) | ||
| Theorem | psrbag0 21998* | The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ 𝐷) | ||
| Theorem | psrbagsn 21999* | A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) | ||
| Theorem | mplascl 22000* | Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |