![]() |
Metamath
Proof Explorer Theorem List (p. 220 of 444) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28374) |
![]() (28375-29897) |
![]() (29898-44365) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ptcnplem 21901* | Lemma for ptcnp 21902. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) & ⊢ Ⅎ𝑘𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝐺 Fn 𝐼) & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ Fin) & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → (𝐺‘𝑘) = ∪ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) | ||
Theorem | ptcnp 21902* | If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷)) | ||
Theorem | upxp 21903* | Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝑃 = (1st ↾ (𝐵 × 𝐶)) & ⊢ 𝑄 = (2nd ↾ (𝐵 × 𝐶)) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | ||
Theorem | txcnmpt 21904* | A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝐻 = (𝑥 ∈ 𝑊 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) | ||
Theorem | uptx 21905* | Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×t 𝑆) & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌) & ⊢ 𝑃 = (1st ↾ 𝑍) & ⊢ 𝑄 = (2nd ↾ 𝑍) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | ||
Theorem | txcn 21906 | A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌) & ⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝑃 = (1st ↾ 𝑍) & ⊢ 𝑄 = (2nd ↾ 𝑍) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) | ||
Theorem | ptcn 21907* | If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | prdstopn 21908 | Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ 𝑂 = (TopOpen‘𝑌) ⇒ ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) | ||
Theorem | prdstps 21909 | A structure product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopSp) | ||
Theorem | pwstps 21910 | A structure product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ TopSp) | ||
Theorem | txrest 21911 | The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅 ↾t 𝐴) ×t (𝑆 ↾t 𝐵))) | ||
Theorem | txdis 21912 | The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) | ||
Theorem | txindislem 21913 | Lemma for txindis 21914. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵)) | ||
Theorem | txindis 21914 | The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)} | ||
Theorem | txdis1cn 21915* | A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) | ||
Theorem | txlly 21916* | If the property 𝐴 is preserved under topological products, then so is the property of being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴) | ||
Theorem | txnlly 21917* | If the property 𝐴 is preserved under topological products, then so is the property of being n-locally 𝐴. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴) → (𝑅 ×t 𝑆) ∈ 𝑛-Locally 𝐴) | ||
Theorem | pthaus 21918 | The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Haus) → (∏t‘𝐹) ∈ Haus) | ||
Theorem | ptrescn 21919* | Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐵)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝑋 ↦ (𝑥 ↾ 𝐵)) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | txtube 21920* | The "tube lemma". If 𝑋 is compact and there is an open set 𝑈 containing the line 𝑋 × {𝐴}, then there is a "tube" 𝑋 × 𝑢 for some neighborhood 𝑢 of 𝐴 which is entirely contained within 𝑈. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝑈 ∈ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)) | ||
Theorem | txcmplem1 21921* | Lemma for txcmp 21923. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Comp) & ⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) | ||
Theorem | txcmplem2 21922* | Lemma for txcmp 21923. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Comp) & ⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣) | ||
Theorem | txcmp 21923 | The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened 21-Mar-2015.) |
⊢ ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp) | ||
Theorem | txcmpb 21924 | The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))) | ||
Theorem | hausdiag 21925 | A topology is Hausdorff iff the diagonal set is closed in the topology's product with itself. EDITORIAL: very clumsy proof, can probably be shortened substantially. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽)))) | ||
Theorem | hauseqlcld 21926 | In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ 𝐺) ∈ (Clsd‘𝐽)) | ||
Theorem | txhaus 21927 | The topological product of two Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (𝑅 ×t 𝑆) ∈ Haus) | ||
Theorem | txlm 21928* | Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⇒ ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) | ||
Theorem | lmcn2 21929* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) & ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) & ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) | ||
Theorem | tx1stc 21930 | The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ×t 𝑆) ∈ 1st𝜔) | ||
Theorem | tx2ndc 21931 | The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝑅 ∈ 2nd𝜔 ∧ 𝑆 ∈ 2nd𝜔) → (𝑅 ×t 𝑆) ∈ 2nd𝜔) | ||
Theorem | txkgen 21932 | The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on 𝑆 can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen) | ||
Theorem | xkohaus 21933 | If the codomain space is Hausdorff, then the compact-open topology of continuous functions is also Hausdorff. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Haus) → (𝑆 ^ko 𝑅) ∈ Haus) | ||
Theorem | xkoptsub 21934 | The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐽 = (∏t‘(𝑋 × {𝑆})) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽 ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅)) | ||
Theorem | xkopt 21935 | The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝑅}))) | ||
Theorem | xkopjcn 21936* | Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both 𝑓 and 𝐴 as a function on (𝑆 ^ko 𝑅) ×t 𝑅, but not without stronger assumptions on 𝑅; see xkofvcn 21964.) (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝑅 ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓‘𝐴)) ∈ ((𝑆 ^ko 𝑅) Cn 𝑆)) | ||
Theorem | xkoco1cn 21937* | If 𝐹 is a continuous function, then 𝑔 ↦ 𝑔 ∘ 𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 21938 independently of the more general xkococn 21940 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝜑 → 𝑇 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 Cn 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ^ko 𝑆) Cn (𝑇 ^ko 𝑅))) | ||
Theorem | xkoco2cn 21938* | If 𝐹 is a continuous function, then 𝑔 ↦ 𝐹 ∘ 𝑔 is a continuous function on function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 Cn 𝑇)) ⇒ ⊢ (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) ∈ ((𝑆 ^ko 𝑅) Cn (𝑇 ^ko 𝑅))) | ||
Theorem | xkococnlem 21939* | Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓 ∘ 𝑔)) & ⊢ (𝜑 → 𝑆 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐾 ⊆ ∪ 𝑅) & ⊢ (𝜑 → (𝑅 ↾t 𝐾) ∈ Comp) & ⊢ (𝜑 → 𝑉 ∈ 𝑇) & ⊢ (𝜑 → 𝐴 ∈ (𝑆 Cn 𝑇)) & ⊢ (𝜑 → 𝐵 ∈ (𝑅 Cn 𝑆)) & ⊢ (𝜑 → ((𝐴 ∘ 𝐵) “ 𝐾) ⊆ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(〈𝐴, 𝐵〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝐾) ⊆ 𝑉}))) | ||
Theorem | xkococn 21940* | Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓 ∘ 𝑔)) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝐹 ∈ (((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅)) Cn (𝑇 ^ko 𝑅))) | ||
Theorem | cnmptid 21941* | The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | cnmptc 21942* | A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | cnmpt11 21943* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) & ⊢ (𝑦 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmpt11f 21944* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmpt1t 21945* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) | ||
Theorem | cnmpt12f 21946* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) | ||
Theorem | cnmpt12 21947* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) & ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐷) ∈ (𝐽 Cn 𝑀)) | ||
Theorem | cnmpt1st 21948* | The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | ||
Theorem | cnmpt2nd 21949* | The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | ||
Theorem | cnmpt2c 21950* | A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑃 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | ||
Theorem | cnmpt21 21951* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | ||
Theorem | cnmpt21f 21952* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | ||
Theorem | cnmpt2t 21953* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀))) | ||
Theorem | cnmpt22 21954* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) & ⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) & ⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | ||
Theorem | cnmpt22f 21955* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | ||
Theorem | cnmpt1res 21956* | The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.) |
⊢ 𝐾 = (𝐽 ↾t 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) | ||
Theorem | cnmpt2res 21957* | The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ 𝐾 = (𝐽 ↾t 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ 𝑁 = (𝑀 ↾t 𝑊) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑊 ⊆ 𝑍) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) | ||
Theorem | cnmptcom 21958* | The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿)) | ||
Theorem | cnmptkc 21959* | The curried first projection function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) ∈ (𝐽 Cn (𝐽 ^ko 𝐾))) | ||
Theorem | cnmptkp 21960* | The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmptk1 21961* | The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) & ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ^ko 𝐾))) | ||
Theorem | cnmpt1k 21962* | The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ^ko 𝐿))) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ^ko 𝐽))) | ||
Theorem | cnmptkk 21963* | The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) & ⊢ (𝜑 → 𝐿 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐽 Cn (𝑀 ^ko 𝐿))) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶)) ∈ (𝐽 Cn (𝑀 ^ko 𝐾))) | ||
Theorem | xkofvcn 21964* | Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 21936.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐹 = (𝑓 ∈ (𝑅 Cn 𝑆), 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) ⇒ ⊢ ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top) → 𝐹 ∈ (((𝑆 ^ko 𝑅) ×t 𝑅) Cn 𝑆)) | ||
Theorem | cnmptk1p 21965* | The evaluation of a curried function by a one-arg function is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) | ||
Theorem | cnmptk2 21966* | The uncurrying of a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | ||
Theorem | xkoinjcn 21967* | Continuity of "injection", i.e. currying, as a function on continuous function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) ⇒ ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝐹 ∈ (𝑅 Cn ((𝑆 ×t 𝑅) ^ko 𝑆))) | ||
Theorem | cnmpt2k 21968* | The currying of a two-argument function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) | ||
Theorem | txconn 21969 | The topological product of two connected spaces is connected. (Contributed by Mario Carneiro, 29-Mar-2015.) |
⊢ ((𝑅 ∈ Conn ∧ 𝑆 ∈ Conn) → (𝑅 ×t 𝑆) ∈ Conn) | ||
Theorem | imasnopn 21970 | If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾) | ||
Theorem | imasncld 21971 | If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsd‘(𝐽 ×t 𝐾)) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ∈ (Clsd‘𝐾)) | ||
Theorem | imasncls 21972 | If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴 ∈ 𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})) | ||
Syntax | ckq 21973 | Extend class notation with the Kolmogorov quotient function. |
class KQ | ||
Definition | df-kq 21974* | Define the Kolmogorov quotient. This is a function on topologies which maps a topology to its quotient under the topological distinguishability map, which takes a point to the set of open sets that contain it. Two points are mapped to the same image under this function iff they are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | ||
Theorem | qtopval 21975* | Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹 “ 𝑋) ∣ ((◡𝐹 “ 𝑠) ∩ 𝑋) ∈ 𝐽}) | ||
Theorem | qtopval2 21976* | Value of the quotient topology function when 𝐹 is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽}) | ||
Theorem | elqtop 21977 | Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | ||
Theorem | qtopres 21978 | The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that 𝐹 be a function with domain 𝑋. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 ↾ 𝑋))) | ||
Theorem | qtoptop2 21979 | The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) | ||
Theorem | qtoptop 21980 | The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) | ||
Theorem | elqtop2 21981 | Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | ||
Theorem | qtopuni 21982 | The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) | ||
Theorem | elqtop3 21983 | Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | ||
Theorem | qtoptopon 21984 | The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) | ||
Theorem | qtopid 21985 | A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | ||
Theorem | idqtop 21986 | The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop ( I ↾ 𝑋)) = 𝐽) | ||
Theorem | qtopcmplem 21987 | Lemma for qtopcmp 21988 and qtopconn 21989. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) | ||
Theorem | qtopcmp 21988 | A quotient of a compact space is compact. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Comp) | ||
Theorem | qtopconn 21989 | A quotient of a connected space is connected. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Conn ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Conn) | ||
Theorem | qtopkgen 21990 | A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen) | ||
Theorem | basqtop 21991 | An injection maps bases to bases. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝐽 qTop 𝐹) ∈ TopBases) | ||
Theorem | tgqtop 21992 | An injection maps generated topologies to each other. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ TopBases ∧ 𝐹:𝑋–1-1-onto→𝑌) → ((topGen‘𝐽) qTop 𝐹) = (topGen‘(𝐽 qTop 𝐹))) | ||
Theorem | qtopcld 21993 | The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)))) | ||
Theorem | qtopcn 21994 | Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐾))) | ||
Theorem | qtopss 21995 | A surjective continuous function from 𝐽 to 𝐾 induces a topology 𝐽 qTop 𝐹 on the base set of 𝐾. This topology is in general finer than 𝐾. Together with qtopid 21985, this implies that 𝐽 qTop 𝐹 is the finest topology making 𝐹 continuous, i.e. the final topology with respect to the family {𝐹}. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) | ||
Theorem | qtopeu 21996* | Universal property of the quotient topology. If 𝐺 is a function from 𝐽 to 𝐾 which is equal on all equivalent elements under 𝐹, then there is a unique continuous map 𝑓:(𝐽 / 𝐹)⟶𝐾 such that 𝐺 = 𝑓 ∘ 𝐹, and we say that 𝐺 "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐺‘𝑥) = (𝐺‘𝑦)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓 ∘ 𝐹)) | ||
Theorem | qtoprest 21997 | If 𝐴 is a saturated open or closed set (where saturated means that 𝐴 = (◡𝐹 “ 𝑈) for some 𝑈), then the restriction of the quotient map 𝐹 to 𝐴 is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝑈 ⊆ 𝑌) & ⊢ (𝜑 → 𝐴 = (◡𝐹 “ 𝑈)) & ⊢ (𝜑 → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) ⇒ ⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) | ||
Theorem | qtopomap 21998* | If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) | ||
Theorem | qtopcmap 21999* | If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑥) ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) | ||
Theorem | imastopn 22000 | The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑂 = (TopOpen‘𝑈) ⇒ ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |