HomeHome Metamath Proof Explorer
Theorem List (p. 220 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 21901-22000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremchpscmatgsumbin 21901* The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}    &   𝑆 = (algSc‘𝑃)    &    = (-g𝑃)    &   𝐹 = (.g𝑃)    &   𝐻 = (mulGrp‘𝑅)    &   𝐸 = (.g𝐻)    &   𝐼 = (invg𝑅)    &    · = ( ·𝑠𝑃)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))))
 
Theoremchpscmatgsummon 21902* The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}    &   𝑆 = (algSc‘𝑃)    &    = (-g𝑃)    &   𝐹 = (.g𝑃)    &   𝐻 = (mulGrp‘𝑅)    &   𝐸 = (.g𝐻)    &   𝐼 = (invg𝑅)    &    · = ( ·𝑠𝑃)    &   𝑍 = (.g𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))))
 
Theoremchp0mat 21903 The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &    0 = (0g𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶0 ) = ((♯‘𝑁) 𝑋))
 
Theoremchpidmat 21904 The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐼 = (1r𝐴)    &   𝑆 = (algSc‘𝑃)    &    1 = (1r𝑅)    &    = (-g𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶𝐼) = ((♯‘𝑁) (𝑋 (𝑆1 ))))
 
Theoremchmaidscmat 21905 The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 5-Jul-2022.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐸 = (Base‘𝑃)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝐾 = (Base‘𝑌)    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑆 = (𝑁 ScMat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐶𝑀) · 1 ) ∈ 𝑆)
 
11.7.2  The characteristic factor function G

In this subsection the function 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))) is discussed. This function is involved in the representation of the product of the characteristic matrix of a given matrix and its adjunct as an infinite sum, see cpmadugsum 21935. Therefore, this function is called "characteristic factor function" (in short "chfacf") in the following. It plays an important role in the proof of the Cayley-Hamilton theorem, see cayhamlem1 21923, cayhamlem3 21944 and cayhamlem4 21945.

 
Theoremfvmptnn04if 21906* The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.)
𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))    &   (𝜑𝑆 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑌𝑉)    &   ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)    &   ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)    &   ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)    &   ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)       (𝜑 → (𝐺𝑁) = 𝑌)
 
Theoremfvmptnn04ifa 21907* The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.)
𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))    &   (𝜑𝑆 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)       ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐴)
 
Theoremfvmptnn04ifb 21908* The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.)
𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))    &   (𝜑𝑆 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)       ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐵)
 
Theoremfvmptnn04ifc 21909* The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.)
𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))    &   (𝜑𝑆 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)       ((𝜑𝑁 = 𝑆𝑁 / 𝑛𝐶𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐶)
 
Theoremfvmptnn04ifd 21910* The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.)
𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))    &   (𝜑𝑆 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)       ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐷)
 
Theoremchfacfisf 21911* The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
 
Theoremchfacfisfcpmat 21912* The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑆 = (𝑁 ConstPolyMat 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0𝑆)
 
Theoremchfacffsupp 21913* The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019.) (Proof shortened by AV, 23-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺 finSupp (0g𝑌))
 
Theoremchfacfscmulcl 21914* Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑌)    &    = (.g‘(mulGrp‘𝑃))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 𝑋) · (𝐺𝐾)) ∈ (Base‘𝑌))
 
Theoremchfacfscmul0 21915* A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑌)    &    = (.g‘(mulGrp‘𝑃))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 )
 
Theoremchfacfscmulfsupp 21916* A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑌)    &    = (.g‘(mulGrp‘𝑃))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))) finSupp 0 )
 
Theoremchfacfscmulgsum 21917* Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑌)    &    = (.g‘(mulGrp‘𝑃))    &    + = (+g𝑌)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
 
Theoremchfacfpmmulcl 21918* Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &    = (.g‘(mulGrp‘𝑌))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) ∈ (Base‘𝑌))
 
Theoremchfacfpmmul0 21919* The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &    = (.g‘(mulGrp‘𝑌))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 )
 
Theoremchfacfpmmulfsupp 21920* A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &    = (.g‘(mulGrp‘𝑌))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖))) finSupp 0 )
 
Theoremchfacfpmmulgsum 21921* Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &    = (.g‘(mulGrp‘𝑌))    &    + = (+g𝑌)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 (𝑇𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
 
Theoremchfacfpmmulgsum2 21922* Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &    = (.g‘(mulGrp‘𝑌))    &    + = (+g𝑌)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) + ((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
 
Theoremcayhamlem1 21923* Lemma 1 for cayleyhamilton 21947. (Contributed by AV, 11-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &    = (.g‘(mulGrp‘𝑌))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
 
11.7.3  The Cayley-Hamilton theorem

In this section, a direct algebraic proof for the Cayley-Hamilton theorem is provided, according to Wikipedia ("Cayley-Hamilton theorem", 09-Nov-2019, https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem, section "A direct algebraic proof" (this approach is also used for proving Lemma 1.9 in [Hefferon] p. 427):

"This proof uses just the kind of objects needed to formulate the Cayley-Hamilton theorem: matrices with polynomials as entries. The matrix (t * In - A) whose determinant is the characteristic polynomial of A is such a matrix, and since polynomials [over a commutative ring] form a commutative ring, it has an adjugate

(1) B = adj(t * In - A) .

Then, according to the right-hand fundamental relation of the adjugate, one has

(2) ( t * In - A ) x B = det(t * In - A) x In = p(t) * In .

Since B is also a matrix with polynomials in t as entries, one can, for each i, collect the coefficients of t^i in each entry to form a matrix Bi of numbers, such that one has

(3) B = sumi = 0 to (n-1) t^i Bi .

(The way the entries of B are defined makes clear that no powers higher than t^(n-1) occur). While this looks like a polynomial with matrices as coefficients, we shall not consider such a notion; it is just a way to write a matrix with polynomial entries as a linear combination of n constant matrices, and the coefficient t^i has been written to the left of the matrix to stress this point of view.

Now, one can expand the matrix product in our equation by bilinearity

(4) p(t) * In = ( t * In - A ) x B
= ( t * In - A ) x sumi = 0 to (n-1) t^i * Bi
= sumi = 0 to (n-1) t * In x t^i Bi - sumi = 0 to (n-1) A * t^i Bi
= sumi = 0 to (n-1) t^(i+1) * Bi - sumi = 0 to (n-1) t^i * A x Bi
= t^n Bn-1 + sumi = 1 to (n-1) t^i * ( Bi-1 - A x Bi ) - A x B0 .

Writing

(5) p(t) In = t^n * In + t^(n-1) * c(n-1) x In + ... + t * c1 In + c0 In ,

one obtains an equality of two matrices with polynomial entries, written as linear combinations of constant matrices with powers of t as coefficients. Such an equality can hold only if in any matrix position the entry that is multiplied by a given power t^i is the same on both sides; it follows that the constant matrices with coefficient t^i in both expressions must be equal. Writing these equations then for i from n down to 0, one finds

(6) Bn-1 = In , Bi-1 - A x Bi = ci * In for 1 <= i <= n-1 , - A x B0 = c0 * In .

Finally, multiply the equation of the coefficients of t^i from the left by A^i, and sum up:

(7) A^n Bn-1 + sumi = 1 to (n-1) ( A^i x Bi-1 - A^(i+1) x Bi ) - A x B0 = A^n + cn-1 * A^(n-1) + ... + c1 * A + c0 * In .

The left-hand sides form a telescoping sum and cancel completely; the right-hand sides add up to p(A):

(8) 0 = p(A) .

This completes the proof."

To formalize this approach, the steps mentioned in Wikipedia must be elaborated in more detail.

The first step is to formalize the preliminaries and the objective of the theorem. In Wikipedia, the Cayley-Hamilton theorem is stated as follows: "... the Cayley-Hamilton theorem ... states that every square matrix over a commutative ring ... satisfies its own characteristic equation." Or in more detail: "If A is a given n x n matrix and In is the n x n identity matrix, then the characteristic polynomial of A is defined as p(t) = det(t * In - A), where det is the determinant operation and t is a variable for a scalar element of the base ring. Since the entries of the matrix (t * In - A) are (linear or constant) polynomials in t, the determinant is also an n-th order monic polynomial in t. The Cayley-Hamilton theorem states that if one defines an analogous matrix equation, p(A), consisting of the replacement of the scalar eigenvalues t with the matrix A, then this polynomial in the matrix A results in the zero matrix,

p(A) = 0.

The powers of A, obtained by substitution from powers of t, are defined by repeated matrix multiplication; the constant term of p(t) gives a multiple of the power A^0, which is defined as the identity matrix. The theorem allows A^n to be expressed as a linear combination of the lower matrix powers of A. When the ring is a field, the Cayley-Hamilton theorem is equivalent to the statement that the minimal polynomial of a square matrix divides its characteristic polynomial."

Actually, the definition of the characteristic polynomial of a square matrix requires some attention. According to df-chpmat 21884, the characteristic polynomial of an 𝑁 x 𝑁 matrix 𝑀 over a ring 𝑅 is defined as

((𝑁 CharPlyMat 𝑅)‘𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))

where 𝐷 = (𝑁 maDet 𝑃) is the function mapping an 𝑁 x 𝑁 matrix over the polynomial ring over the ring 𝑅 to its determinant, 𝑋 = (var1𝑅) is the variable of the polynomials over 𝑅, 1 is the 𝑁 x 𝑁 identity matrix as matrix over the polynomial ring over the ring 𝑅 (not the 𝑁 x 𝑁 identity matrix of the matrices over the ring 𝑅!) and (𝑇𝑀) = ((𝑁 matToPolyMat 𝑅)‘𝑀) is the matrix 𝑀 over a ring 𝑅 transformed into a constant matrix over the polynomial ring over the ring 𝑅. Thus · is the multiplication of a polynomial matrix with a "scalar", i.e. a polynomial (see chpmatval 21888).

By this definition, it is ensured that ((𝑋 · 1 ) (𝑇𝑀)), the matrix whose determinant is the characteristic polynomial of the matrix 𝑀, is actually a matrix over the polynomial ring over the ring 𝑅, as stated in Wikipedia ("matrix with polynomials as entries"). This matrix is called the characteristic matrix of matrix 𝑀 (see Wikipedia "Polynomial matrix", 16-Nov-2019, https://en.wikipedia.org/wiki/Polynomial_matrix 21888). Following the notation in Wikipedia, we denote the characteristic polynomial of the matrix 𝑀, formally defined by ((𝑁 CharPlyMat 𝑅)‘𝑀) as "p(M)" in the comments. The characteristric matrix ((𝑋 · 1 ) (𝑇𝑀)) will be denoted by "c(M)", so that "p(M) = det( c(M) )".

After the preliminaries are clarified, the objective of the Cayley-Hamilton theorem must be considered. As described in Wikipedia, the matrix 𝑀 must be "inserted" into its characteristic polynomial in an appropriate way. Since every polynomial can be represented as infinite, but finitely supported sum of monomials scaled by the corresponding coefficients (see ply1coe 21377), also the characteristic polynomial can be written in this way:

p(M) = sumi ( pi * M^i )

Here, * is the scalar multiplication in the algebra of the polynomials over the ring 𝑅, and the coefficients are elements of the ring 𝑅.

By this, we can "define" the insertion of the matrix M into its characteristic polynomial by "p(M) = sum( pi * M^i)", see also cayleyhamilton1 21949. Here, * is the scalar multiplication in the algebra of the matrices over the ring 𝑅.

To prove the Cayley-Hamilton theorem, we have to show that "p(M) = 0", where 0 is the zero matrix.

In this section, the following class variables and informal identifiers (acronyms in the form "A(B)" or "AB") are used:

class variable/ informal identifier definiens explanation
𝑁 An arbitrary finite set, used as dimension for matrices
𝑅 An arbitrary (commutative) ring: 𝑅 ∈ CRing
B(R) (Base‘𝑅) Base set of (the ring) 𝑅
𝐴 (𝑁 Mat 𝑅) Algebra of 𝑁 x 𝑁 matrices over (the ring) 𝑅
𝐵 (Base‘𝐴) Base set of the algebra of 𝑁 x 𝑁 matrices, i .e. the set of all 𝑁 x 𝑁 matrices
𝑀 An arbitrary 𝑁 x 𝑁 matrix
𝑃 (Poly1𝑅) The algebra of polynomials over (the ring) 𝑅
B(P) (Base‘𝑃) Base set of the algebra of polynomials, i .e. the set of all polynomials
𝑋, XR (var1𝑅) The variable of polynomials over (the ring) 𝑅
𝑌, XA (var1𝐴) The variable of polynomials over matrices of the algebra 𝐴
(.g‘(mulGrp‘𝑃)) The group exponentiation for polynomials over (the ring) 𝑅
^ Arbitrary group exponentiation
𝑈 (algSc‘𝑃) The injection of scalars, i.e. elements of (the ring) 𝑅 into the base set of the algebra of polynomials over 𝑅
(𝑈𝑝), S(p) ((algSc‘𝑃)‘𝑝) The element 𝑝 of (the ring) 𝑅 represented as polynomial over 𝑅
𝑌 (𝑁 Mat 𝑃) Algebra of 𝑁 x 𝑁 matrices over (the polynomial ring) 𝑃 over the ring 𝑅
B(Y) (Base‘𝑌) Base set of the algebra of polynomial 𝑁 x 𝑁 matrices, i .e. the set of all polynomial 𝑁 x 𝑁 matrices
𝑄 (Poly1𝐴) Algebra of polynomials over the ring of 𝑁 x 𝑁 matrices over the ring 𝑅
B(Q) (Base‘𝑄) Base set of the algebra of polynomials over the ring of 𝑁 x 𝑁 matrices over the ring 𝑅, i .e. the set of all polynomials having 𝑁 x 𝑁 matrices as coefficients
+, + (+g𝑌) The addition of polynomial matrices
, - (-g𝑌) The subtraction of polynomial matrices
·, *Y ( ·𝑠𝑌) The multiplication of a polynomial matrix with a scalar ( i. e. a polynomial)
*A ( ·𝑠𝐴) The multiplication of a matrix with a scalar ( i. e. an element of the underlying ring)
*Q ( ·𝑠𝑄) The multiplication of a polynomial over matrices with a scalar ( i. e. a matrix)
×, xY (.r𝑌) The multiplication of polynomial matrices
xA (.r𝐴) The multiplication of matrices
xQ (.r𝑄) The multiplication of polynomials over matrices
1, 1Y (1r𝑌) The identity matrix in the algebra of polynomial matrices over 𝑅
1A (1r𝐴) The identity matrix in the algebra of matrices over 𝑅
0, 0Y (0g𝑌) The zero matrix in the algebra of matrices consisting of polynomials
𝑇 (𝑁 matToPolyMat 𝑅) The transformation of an 𝑁 x 𝑁 matrix over 𝑅 into a polynomial 𝑁 x 𝑁 matrix over 𝑅
T1(M) (𝑇𝑀) The matrix M transformed into a polynomial 𝑁 x 𝑁 matrix over 𝑅
U(M) (𝑈𝑀) The (constant) polynomial 𝑁 x 𝑁 matrix M transformed into a matrix over the ring 𝑅. Inverse function of 𝑇: (𝑇‘(𝑈𝑀)) = 𝑀 (see m2cpminvid2 21812 )
T2(M) ((𝑁 pMatToMatPoly 𝑅)‘𝑀) The polynomial 𝑁 x 𝑁 matrix M transformed into a polynomial over the 𝑁 x 𝑁 matrices over 𝑅
𝐼, c(M) ((𝑋 · 1 ) (𝑇𝑀)) The characteristic matrix of a matrix 𝑀, i.e. the matrix whose determinant is the characteristic polynomial of the matrix 𝑀
𝐶 (𝑁 CharPlyMat 𝑅) The function mapping a matrix over (a ring) 𝑅 to its characteristic polynomial
𝐾, p(M) (𝐶𝑀) The characteristic polynomial of a matrix over (a ring) 𝑅
𝐻 (𝐾 · 1 ) The scalar matrix (diagonal matrix) with the characteristic polynomial of a matrix as diagional elements
𝐽 (𝑁 maAdju 𝑃) The function mapping a matrix consisting of polynomials to its adjugate ("matrix of cofactors")
𝑊, adj(cm(M)) (𝐽𝐼) The adjugate of the characteristic matrix of the matrix 𝑀


Using this notation, we have:
  1. "c(M) e. B(Y)", or 𝐼 ∈ (Base‘𝑌), see chmatcl 21885
  2. "p(M) e. B(P)", or 𝐾 ∈ (Base‘𝑃), see chpmatply1 21889
  3. "T(M) e. B(Y)", or (𝑇𝑀) ∈ (Base‘𝑌), see mat2pmatbas 21783
  4. 𝐽:(Base‘𝑌)⟶(Base‘𝑌), see maduf 21698
  5. "adj(cm(M)) e. B(Y)", or 𝑊 ∈ (Base‘𝑌)


Following the proof shown in Wikipedia, the following steps are performed:
  1. Write 𝑊, the adjugate of the characteristic matrix, as a finite sum of scaled monomials, see pmatcollpw3fi1 21845:
    adj(cm(M)) = sumi=0 to s ( XR ^i *Y T1(b(i)) )
    where b(i) are matrices over the ring 𝑅, so T1(b(i)) are constant polynomial matrices.
    This step corresponds to (3) in Wikipedia. In contrast to Wikipedia, we write 𝑊 as finite sum of not exactly determined number of summands, which may be greater than needed (including summands of value 0). This will be sufficient to provide a representation of (𝐼 × 𝑊) as infinite, but finitely supported sum, see step 3.
  2. Write (𝐼 × 𝑊), the product of the characteristic matrix and its adjugate as finite sum of scaled monomials, see cpmadugsumfi 21934. This representation is obtained by replacing 𝑊 by the representation resulting from step 1. and performing calculation rules available for the associative algebra of matrices over polynomials over a commutative ring:
    cm(M) *Y adj(cm(M)) = sumi=0 to s ( XR ^i *Y ( T1(b(i-1)) - T1(M) xY T1(b(i)) ) ) + XR ^(s+1) *Y ( T1(b(s)) - T1(M) xY T1(b(0))
    where b(i) are matrices over 𝑅, so T1(b(i)) are constant polynomial matrices:
    cm(M) *Y adj(cm(M))
    = cm(M) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) [see pmatcollpw3fi1 21845 (step 1.)]
    = ( ( XA *Y 1Y ) - T1(M) ) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) [def. of cm(M)]
    = ( XA *Y 1Y ) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) - T1(M) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) [see rngsubdir 19754]
    = sumi=0 to s ( XR ^i *Y ( T1(b(i-1)) - T1(M) xY T1(b(i)) ) ) + XR ^(s+1) *Y ( T1(b(s)) - T1(M) xY T1(b(0)) [see cpmadugsumlemF 21933]
    This step corresponds partially to (4) in Wikipedia.
  3. Write (𝐼 × 𝑊) as infinite, but finitely supported sum of scaled monomials, see cpmadugsum 21935:
    cm(M) * adj(cm(M)) = sumi ( XR ^i *Y G(i) )
    This representation is obtained by defining a function G for the coefficients, which we call "characteristic factor function", see chfacfisf 21911, which covers the special terms and the padding with 0. G(i) is a constant polynomial matrix (see chfacfisfcpmat 21912). This step corresponds partially to (4) in Wikipedia, with summands of value 0 added.
  4. Write 𝐻 = (𝐾 · 1 ), the scalar matrix (diagonal matrix) with the characteristic polynomial of a matrix as diagional elements, as infinite, but finitely supported sum of scaled monomials. See cpmidgsum 21925:
    p(m) *Y IY = sumi ( XR ^i *Y ( S(pi) *Y IY ) )
    The proof of cpmidgsum 21925 is making use of pmatcollpwscmat 21848, because 𝐻 = (𝐾 · 1 ) is a scalar/diagonal polynomial matrix with the characteristic polynomial "p(M)" as diagonal entries (since pi is an element of the ring 𝑅, S(pi) is a (constant) polynomial). This corresponds to (5) in Wikipedia, with summands of value 0 added.
  5. Transform the sum representation of (𝐼 × 𝑊) from step 3. into polynomials over matrices:
    T2(cm(M) * adj(cm(M))) = sumi ( U(G(i)) *Q XA ^i ) [see cpmadumatpoly 21940]
    where U(G(i)) is a matrix over the ring 𝑅.
  6. Transform the sum representation of 𝐻 from step 4. into polynomials over matrices:
    T2(p(m) *Y IY) = sumi ( pi *A IA ) *Q XA ^i ) [see cpmidpmat 21930]
  7. Equate the sum representations resulting from steps 5. and 6. by using cpmadurid 21924 to obtain the equation
    sumi ( U(G(i)) *Q XA ^i ) = sumi ( pi *A IA ) *Q XA ^i ):
    sumi ( U(G(i)) *Q XA ^i )
    = T2(cm(M) * adj(cm(M))) [see step 5.]
    = T2(p(m) *Y IY) [see cpmadurid 21924]
    = sumi ( pi *A IA ) *Q XA ^i ) [see step 6.]
    Note that this step is contained in the proof of chcoeffeq 21943, see step 9. This step corresponds to the conclusion from (4) and (5) in Wikipedia, with summands of value 0 added.
  8. Compare the sum representations of step 7. to obtain the equations U(G(i)) = pi *A IA , see chcoeffeqlem 21942. This corresponds to (6) in Wikipedia. Since the coefficients of the transformed representations and the original representations are identical, the equations of the coefficients are also valid for the original representations of steps 3. and 4.
  9. Multiply the equations of the coefficients from step 8. from the left by M^i, and sum up, see chcoeffeq 21943:
    sumi ( M^i xA U(G(i)) ) = sumi ( M^i xA ( pi *A IA) )
    This corresponds to (7) in Wikipedia.
  10. Transform the right hand side of the equation in step 9. into an appropriate form, see cayhamlem3 21944:
    sumi ( pi *A M^i )
    = sumi ( M^i xA ( pi *A IA) ) [see cayhamlem2 21941]
    = sumi ( M^i xA U(G(i)) ) [see chcoeffeq 21943]
  11. Apply the theorem for telescoping sums, see telgsumfz 19506, to the sum sumi ( T1(M)^i xY G(i) ), which results in an equation to 0:
    sumi ( T1(M)^i xY G(i) ) = 0Y, see cayhamlem1 21923:
    sumi ( T1(M)^i xY G(i) )
    = sumi=1 to s ( T1(M)^i xY T1(b(i-1)) - T1(M)^(i+1) xY T1(b(i)) )
    + ( T1(M)^(s+1) xY T1(b(s)) - T1(M) xY T1(b(0)) ) [see chfacfpmmulgsum2 21922]
    = ( T1(M) xY T1(b(0)) - T1(M)^(s+1) xY T1(b(s)) ) + ( T1 M)^(s+1) xY T1(b(s)) - T1(M) xY T1(b(0)) ) [see telgsumfz 19506]
    = 0Y [see grpnpncan0 18586] This step corresponds partially to (8) in Wikipedia.
  12. Since 𝑇 is a ring homomorphism (see mat2pmatrhm 21791), the left hand side of the equation in step 10. can be transformed into a representation appropriate to apply the result of step 11., see cayhamlem4 21945:
    sumi ( pi *A M^i )
    = sumi ( M^i xA U(G(i)) ) [see cayhamlem3 21944 (step 10.)]
    = U(T1(sumi ( M^i xA U(G(i)) ))) [see m2cpminvid 21810]
    = U(sumi T1( M^i xA U(G(i)) )) [see gsummptmhm 19456]
    = U(sumi ( T1(M^i) xY T1(U(G(i))) )) [see rhmmul 19886]
    = U(sumi ( T1(M)^i xY T1(U(G(i))) )) [see mhmmulg 18659]
    = U(sumi ( T1(M)^i xY G(i) )) [see m2cpminvid2 21812 ]
  13. Finally, combine the results of steps 11. and 12., and use the fact that 𝑇 (and therefore also its inverse 𝑈) is an injective ring homomorphism (see mat2pmatf1 21786 and mat2pmatrhm 21791) to transform the equality resulting from steps 11. and 12. into the desired equation sumi ( pi *A M^i ) = 0A , see cayleyhamilton 21947 resp. cayleyhamilton0 21946:
    sumi ( pi *A M^i )
    = U(sumi ( T1(M)^i xY G(i) )) [see cayhamlem4 21945 (step 12.)]
    = U(0Y ) [see cayhamlem1 21923 (step 11.)]
    = 0A [see m2cpminv0 21818]
The transformations in steps 5., 6., 10., 12. and 13. are not mentioned in the proof provided in Wikipedia, since it makes no distinction between a matrix over a ring 𝑅 and its representation as matrix over the polynomial ring over the ring 𝑅 in general!
 
Theoremcpmadurid 21924 The right-hand fundamental relation of the adjugate (see madurid 21701) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    = (-g𝑌)    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝐼 = ((𝑋 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)    &    × = (.r𝑌)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼 × (𝐽𝐼)) = ((𝐶𝑀) · 1 ))
 
Theoremcpmidgsum 21925* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑈 = (algSc‘𝑃)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐻 = (𝐾 · 1 )       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · ((𝑈‘((coe1𝐾)‘𝑛)) · 1 )))))
 
Theoremcpmidgsumm2pm 21926* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑈 = (algSc‘𝑃)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐻 = (𝐾 · 1 )    &   𝑂 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂))))))
 
Theoremcpmidpmatlem1 21927* Lemma 1 for cpmidpmat 21930. (Contributed by AV, 13-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑈 = (algSc‘𝑃)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐻 = (𝐾 · 1 )    &   𝑂 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))       (𝐿 ∈ ℕ0 → (𝐺𝐿) = (((coe1𝐾)‘𝐿) 𝑂))
 
Theoremcpmidpmatlem2 21928* Lemma 2 for cpmidpmat 21930. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑈 = (algSc‘𝑃)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐻 = (𝐾 · 1 )    &   𝑂 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐺 ∈ (𝐵m0))
 
Theoremcpmidpmatlem3 21929* Lemma 3 for cpmidpmat 21930. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑈 = (algSc‘𝑃)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐻 = (𝐾 · 1 )    &   𝑂 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐺 finSupp (0g𝐴))
 
Theoremcpmidpmat 21930* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019.) (Revised by AV, 7-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑈 = (algSc‘𝑃)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐻 = (𝐾 · 1 )    &   𝑂 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑊 = (Base‘𝑌)    &   𝑄 = (Poly1𝐴)    &   𝑍 = (var1𝐴)    &    = ( ·𝑠𝑄)    &   𝐸 = (.g‘(mulGrp‘𝑄))    &   𝐼 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 𝑂) (𝑛𝐸𝑍)))))
 
TheoremcpmadugsumlemB 21931* Lemma B for cpmadugsum 21935. (Contributed by AV, 2-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    × = (.r𝑌)    &    1 = (1r𝑌)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
 
TheoremcpmadugsumlemC 21932* Lemma C for cpmadugsum 21935. (Contributed by AV, 2-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    × = (.r𝑌)    &    1 = (1r𝑌)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
 
TheoremcpmadugsumlemF 21933* Lemma F for cpmadugsum 21935. (Contributed by AV, 7-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    × = (.r𝑌)    &    1 = (1r𝑌)    &    + = (+g𝑌)    &    = (-g𝑌)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
 
Theoremcpmadugsumfi 21934* The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019.) (Proof shortened by AV, 29-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    × = (.r𝑌)    &    1 = (1r𝑌)    &    + = (+g𝑌)    &    = (-g𝑌)    &   𝐼 = ((𝑋 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
 
Theoremcpmadugsum 21935* The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    × = (.r𝑌)    &    1 = (1r𝑌)    &    + = (+g𝑌)    &    = (-g𝑌)    &   𝐼 = ((𝑋 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)    &    0 = (0g𝑌)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
 
Theoremcpmidgsum2 21936* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    × = (.r𝑌)    &    1 = (1r𝑌)    &    + = (+g𝑌)    &    = (-g𝑌)    &   𝐼 = ((𝑋 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)    &    0 = (0g𝑌)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐻 = (𝐾 · 1 )       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
 
Theoremcpmidg2sum 21937* Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)    &    × = (.r𝑌)    &    1 = (1r𝑌)    &    + = (+g𝑌)    &    = (-g𝑌)    &   𝐼 = ((𝑋 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)    &    0 = (0g𝑌)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝑈 = (algSc‘𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · ((𝑈‘((coe1𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
 
Theoremcpmadumatpolylem1 21938* Lemma 1 for cpmadumatpoly 21940. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑆 = (𝑁 ConstPolyMat 𝑅)    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑍 = (var1𝑅)    &   𝐷 = ((𝑍 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)    &   𝑊 = (Base‘𝑌)    &   𝑄 = (Poly1𝐴)    &   𝑋 = (var1𝐴)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)       ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) ∈ (𝐵m0))
 
Theoremcpmadumatpolylem2 21939* Lemma 2 for cpmadumatpoly 21940. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑆 = (𝑁 ConstPolyMat 𝑅)    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑍 = (var1𝑅)    &   𝐷 = ((𝑍 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)    &   𝑊 = (Base‘𝑌)    &   𝑄 = (Poly1𝐴)    &   𝑋 = (var1𝐴)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)       ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
 
Theoremcpmadumatpoly 21940* The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑆 = (𝑁 ConstPolyMat 𝑅)    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝑍 = (var1𝑅)    &   𝐷 = ((𝑍 · 1 ) (𝑇𝑀))    &   𝐽 = (𝑁 maAdju 𝑃)    &   𝑊 = (Base‘𝑌)    &   𝑄 = (Poly1𝐴)    &   𝑋 = (var1𝐴)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)    &   𝐼 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼‘(𝐷 × (𝐽𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛)) (𝑛 𝑋)))))
 
Theoremcayhamlem2 21941 Lemma for cayhamlem3 21944. (Contributed by AV, 24-Nov-2019.)
𝐾 = (Base‘𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &    1 = (1r𝐴)    &    = ( ·𝑠𝐴)    &    = (.g‘(mulGrp‘𝐴))    &    · = (.r𝐴)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐻 ∈ (𝐾m0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻𝐿) (𝐿 𝑀)) = ((𝐿 𝑀) · ((𝐻𝐿) 1 )))
 
Theoremchcoeffeqlem 21942* Lemma for chcoeffeq 21943. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑊 = (Base‘𝑌)    &    1 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
 
Theoremchcoeffeq 21943* The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑊 = (Base‘𝑌)    &    1 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
 
Theoremcayhamlem3 21944* Lemma for cayhamlem4 21945. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑊 = (Base‘𝑌)    &    1 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)    &    = (.g‘(mulGrp‘𝐴))    &    · = (.r𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))))
 
Theoremcayhamlem4 21945* Lemma for cayleyhamilton 21947. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &    0 = (0g𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (𝐶𝑀)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑊 = (Base‘𝑌)    &    1 = (1r𝐴)    &    = ( ·𝑠𝐴)    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)    &    = (.g‘(mulGrp‘𝐴))    &   𝐸 = (.g‘(mulGrp‘𝑌))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
 
Theoremcayleyhamilton0 21946* The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 21947 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 21948)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &    0 = (0g𝐴)    &    1 = (1r𝐴)    &    = ( ·𝑠𝐴)    &    = (.g‘(mulGrp‘𝐴))    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (coe1‘(𝐶𝑀))    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    × = (.r𝑌)    &    = (-g𝑌)    &   𝑍 = (0g𝑌)    &   𝑊 = (Base‘𝑌)    &   𝐸 = (.g‘(mulGrp‘𝑌))    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))    &   𝑈 = (𝑁 cPolyMatToMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
 
Theoremcayleyhamilton 21947* The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &    0 = (0g𝐴)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (coe1‘(𝐶𝑀))    &    = ( ·𝑠𝐴)    &    = (.g‘(mulGrp‘𝐴))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
 
TheoremcayleyhamiltonALT 21948* Alternate proof of cayleyhamilton 21947, the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 21946 directly, but has the same structure as the proof of cayleyhamilton0 21946. In contrast to the proof of cayleyhamilton0 21946, only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &    0 = (0g𝐴)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (coe1‘(𝐶𝑀))    &    = ( ·𝑠𝐴)    &    = (.g‘(mulGrp‘𝐴))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
 
Theoremcayleyhamilton1 21949* The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 21947, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &    0 = (0g𝐴)    &   𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐾 = (coe1‘(𝐶𝑀))    &    = ( ·𝑠𝐴)    &    = (.g‘(mulGrp‘𝐴))    &   𝐿 = (Base‘𝑅)    &   𝑋 = (var1𝑅)    &   𝑃 = (Poly1𝑅)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑍 = (0g𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
 
PART 12  BASIC TOPOLOGY
 
12.1  Topology
 
12.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union, see toponuni 21971), and it may sometimes be more convenient to consider topologies without reference to the underlying set. This is why we define successively the class of topologies (df-top 21951), then the function which associates with a set the set of topologies on it (df-topon 21968), and finally the class of topological spaces, as extensible structures having an underlying set and a topology on it (df-topsp 21990). Of course, a topology is the same thing as a topology on a set (see toprntopon 21982).

 
12.1.1.1  Topologies
 
Syntaxctop 21950 Syntax for the class of topologies.
class Top
 
Definitiondf-top 21951* Define the class of topologies. It is a proper class (see topnex 22054). See istopg 21952 and istop2g 21953 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
 
Theoremistopg 21952* Express the predicate "𝐽 is a topology". See istop2g 21953 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

(𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
 
Theoremistop2g 21953* Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 21952. (Contributed by NM, 19-Jul-2006.)
(𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))))
 
Theoremuniopn 21954 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
 
Theoremiunopn 21955* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
 
Theoreminopn 21956 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
 
Theoremfitop 21957 A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009.)
(𝐽 ∈ Top → (fi‘𝐽) = 𝐽)
 
Theoremfiinopn 21958 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
(𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))
 
Theoremiinopn 21959* The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.)
((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
 
Theoremunopn 21960 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
 
Theorem0opn 21961 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
(𝐽 ∈ Top → ∅ ∈ 𝐽)
 
Theorem0ntop 21962 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
¬ ∅ ∈ Top
 
Theoremtopopn 21963 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → 𝑋𝐽)
 
Theoremeltopss 21964 A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
 
Theoremriinopn 21965* A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
 
Theoremrintopn 21966 A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin) → (𝑋 𝐴) ∈ 𝐽)
 
12.1.1.2  Topologies on sets
 
Syntaxctopon 21967 Syntax for the function of topologies on sets.
class TopOn
 
Definitiondf-topon 21968* Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.)
TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
 
Theoremistopon 21969 Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
 
Theoremtopontop 21970 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
 
Theoremtoponuni 21971 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
 
Theoremtopontopi 21972 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐽 ∈ (TopOn‘𝐵)       𝐽 ∈ Top
 
Theoremtoponunii 21973 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐽 ∈ (TopOn‘𝐵)       𝐵 = 𝐽
 
Theoremtoptopon 21974 Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
 
Theoremtoptopon2 21975 A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
(𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
 
Theoremtopontopon 21976 A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
(𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘ 𝐽))
 
Theoremfuntopon 21977 The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
Fun TopOn
 
Theoremtoponrestid 21978 Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
𝐴 ∈ (TopOn‘𝐵)       𝐴 = (𝐴t 𝐵)
 
Theoremtoponsspwpw 21979 The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.)
(TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴
 
Theoremdmtopon 21980 The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.)
dom TopOn = V
 
Theoremfntopon 21981 The class TopOn is a function with domain the universal class V. Analogue for topologies of fnmre 17217 for Moore collections. (Contributed by BJ, 29-Apr-2021.)
TopOn Fn V
 
Theoremtoprntopon 21982 A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.)
Top = ran TopOn
 
Theoremtoponmax 21983 The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐵𝐽)
 
Theoremtoponss 21984 A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
 
Theoremtoponcom 21985 If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.)
((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
 
Theoremtoponcomb 21986 Biconditional form of toponcom 21985. (Contributed by BJ, 5-Dec-2021.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))
 
Theoremtopgele 21987 The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
(𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
 
Theoremtopsn 21988 The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4828). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
(𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴})
 
12.1.1.3  Topological spaces
 
Syntaxctps 21989 Syntax for the class of topological spaces.
class TopSp
 
Definitiondf-topsp 21990 Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.)
TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
 
Theoremistps 21991 Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
 
Theoremistps2 21992 Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
 
Theoremtpsuni 21993 The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp → 𝐴 = 𝐽)
 
Theoremtpstop 21994 The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.)
𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp → 𝐽 ∈ Top)
 
Theoremtpspropd 21995 A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))       (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
 
Theoremtpsprop2d 21996 A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))       (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
 
Theoremtopontopn 21997 Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopSet‘𝐾)       (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
 
Theoremtsettps 21998 If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopSet‘𝐾)       (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
 
Theoremistpsi 21999 Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
(Base‘𝐾) = 𝐴    &   (TopOpen‘𝐾) = 𝐽    &   𝐴 = 𝐽    &   𝐽 ∈ Top       𝐾 ∈ TopSp
 
Theoremeltpsg 22000 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by AV, 31-Oct-2024.)
𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}       (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >