Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vr1 Structured version   Visualization version   GIF version

Definition df-vr1 20266
 Description: Define the base element of a univariate power series (the 𝑋 element of the set 𝑅[𝑋] of polynomials and also the 𝑋 in the set 𝑅[[𝑋]] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
df-vr1 var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))

Detailed syntax breakdown of Definition df-vr1
StepHypRef Expression
1 cv1 20261 . 2 class var1
2 vr . . 3 setvar 𝑟
3 cvv 3500 . . 3 class V
4 c0 4295 . . . 4 class
5 c1o 8086 . . . . 5 class 1o
62cv 1529 . . . . 5 class 𝑟
7 cmvr 20051 . . . . 5 class mVar
85, 6, 7co 7148 . . . 4 class (1o mVar 𝑟)
94, 8cfv 6352 . . 3 class ((1o mVar 𝑟)‘∅)
102, 3, 9cmpt 5143 . 2 class (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
111, 10wceq 1530 1 wff var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
 Colors of variables: wff setvar class This definition is referenced by:  vr1val  20277
 Copyright terms: Public domain W3C validator