Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-vr1 | Structured version Visualization version GIF version |
Description: Define the base element of a univariate power series (the 𝑋 element of the set 𝑅[𝑋] of polynomials and also the 𝑋 in the set 𝑅[[𝑋]] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
df-vr1 | ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cv1 21257 | . 2 class var1 | |
2 | vr | . . 3 setvar 𝑟 | |
3 | cvv 3422 | . . 3 class V | |
4 | c0 4253 | . . . 4 class ∅ | |
5 | c1o 8260 | . . . . 5 class 1o | |
6 | 2 | cv 1538 | . . . . 5 class 𝑟 |
7 | cmvr 21018 | . . . . 5 class mVar | |
8 | 5, 6, 7 | co 7255 | . . . 4 class (1o mVar 𝑟) |
9 | 4, 8 | cfv 6418 | . . 3 class ((1o mVar 𝑟)‘∅) |
10 | 2, 3, 9 | cmpt 5153 | . 2 class (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) |
11 | 1, 10 | wceq 1539 | 1 wff var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) |
Colors of variables: wff setvar class |
This definition is referenced by: vr1val 21273 |
Copyright terms: Public domain | W3C validator |