| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1val | Structured version Visualization version GIF version | ||
| Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1val | ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | fveq2 6858 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = (PwSer1‘𝑅)) | |
| 3 | ply1val.2 | . . . . . 6 ⊢ 𝑆 = (PwSer1‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = 𝑆) |
| 5 | oveq2 7395 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅)) | |
| 6 | 5 | fveq2d 6862 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅))) |
| 7 | 4, 6 | oveq12d 7405 | . . . 4 ⊢ (𝑟 = 𝑅 → ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 8 | df-ply1 22066 | . . . 4 ⊢ Poly1 = (𝑟 ∈ V ↦ ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟)))) | |
| 9 | ovex 7420 | . . . 4 ⊢ (𝑆 ↾s (Base‘(1o mPoly 𝑅))) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6968 | . . 3 ⊢ (𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 11 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 12 | ress0 17213 | . . . . 5 ⊢ (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅ | |
| 13 | 11, 12 | eqtr4di 2782 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
| 14 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
| 15 | 3, 14 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑆 = ∅) |
| 16 | 15 | oveq1d 7402 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑆 ↾s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
| 17 | 13, 16 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| 19 | 1, 18 | eqtri 2752 | 1 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 Basecbs 17179 ↾s cress 17200 mPoly cmpl 21815 PwSer1cps1 22059 Poly1cpl1 22061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-ply1 22066 |
| This theorem is referenced by: ply1bas 22079 ply1basOLD 22080 ply1crng 22083 ply1assa 22084 ply1bascl 22088 ply1plusg 22108 ply1vsca 22109 ply1mulr 22110 ply1ring 22132 ply1lmod 22136 ply1sca 22137 |
| Copyright terms: Public domain | W3C validator |