Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1val | Structured version Visualization version GIF version |
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
Ref | Expression |
---|---|
ply1val | ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1val.1 | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | fveq2 6768 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = (PwSer1‘𝑅)) | |
3 | ply1val.2 | . . . . . 6 ⊢ 𝑆 = (PwSer1‘𝑅) | |
4 | 2, 3 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = 𝑆) |
5 | oveq2 7276 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅)) | |
6 | 5 | fveq2d 6772 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅))) |
7 | 4, 6 | oveq12d 7286 | . . . 4 ⊢ (𝑟 = 𝑅 → ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
8 | df-ply1 21334 | . . . 4 ⊢ Poly1 = (𝑟 ∈ V ↦ ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟)))) | |
9 | ovex 7301 | . . . 4 ⊢ (𝑆 ↾s (Base‘(1o mPoly 𝑅))) ∈ V | |
10 | 7, 8, 9 | fvmpt 6869 | . . 3 ⊢ (𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
11 | fvprc 6760 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
12 | ress0 16934 | . . . . 5 ⊢ (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅ | |
13 | 11, 12 | eqtr4di 2797 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
14 | fvprc 6760 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
15 | 3, 14 | eqtrid 2791 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑆 = ∅) |
16 | 15 | oveq1d 7283 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑆 ↾s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
17 | 13, 16 | eqtr4d 2782 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
19 | 1, 18 | eqtri 2767 | 1 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 ‘cfv 6430 (class class class)co 7268 1oc1o 8274 Basecbs 16893 ↾s cress 16922 mPoly cmpl 21090 PwSer1cps1 21327 Poly1cpl1 21329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-ply1 21334 |
This theorem is referenced by: ply1bas 21347 ply1crng 21350 ply1assa 21351 ply1bascl 21355 ply1plusg 21377 ply1vsca 21378 ply1mulr 21379 ply1ring 21400 ply1lmod 21404 ply1sca 21405 |
Copyright terms: Public domain | W3C validator |