MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Visualization version   GIF version

Theorem ply1val 22054
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1val.2 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
ply1val 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))

Proof of Theorem ply1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2 𝑃 = (Poly1𝑅)
2 fveq2 6840 . . . . . 6 (𝑟 = 𝑅 → (PwSer1𝑟) = (PwSer1𝑅))
3 ply1val.2 . . . . . 6 𝑆 = (PwSer1𝑅)
42, 3eqtr4di 2782 . . . . 5 (𝑟 = 𝑅 → (PwSer1𝑟) = 𝑆)
5 oveq2 7377 . . . . . 6 (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅))
65fveq2d 6844 . . . . 5 (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅)))
74, 6oveq12d 7387 . . . 4 (𝑟 = 𝑅 → ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆s (Base‘(1o mPoly 𝑅))))
8 df-ply1 22042 . . . 4 Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
9 ovex 7402 . . . 4 (𝑆s (Base‘(1o mPoly 𝑅))) ∈ V
107, 8, 9fvmpt 6950 . . 3 (𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
11 fvprc 6832 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
12 ress0 17189 . . . . 5 (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅
1311, 12eqtr4di 2782 . . . 4 𝑅 ∈ V → (Poly1𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
14 fvprc 6832 . . . . . 6 𝑅 ∈ V → (PwSer1𝑅) = ∅)
153, 14eqtrid 2776 . . . . 5 𝑅 ∈ V → 𝑆 = ∅)
1615oveq1d 7384 . . . 4 𝑅 ∈ V → (𝑆s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
1713, 16eqtr4d 2767 . . 3 𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
1810, 17pm2.61i 182 . 2 (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅)))
191, 18eqtri 2752 1 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cfv 6499  (class class class)co 7369  1oc1o 8404  Basecbs 17155  s cress 17176   mPoly cmpl 21791  PwSer1cps1 22035  Poly1cpl1 22037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-ply1 22042
This theorem is referenced by:  ply1bas  22055  ply1basOLD  22056  ply1crng  22059  ply1assa  22060  ply1bascl  22064  ply1plusg  22084  ply1vsca  22085  ply1mulr  22086  ply1ring  22108  ply1lmod  22112  ply1sca  22113
  Copyright terms: Public domain W3C validator