MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Visualization version   GIF version

Theorem ply1val 21346
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1val.2 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
ply1val 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))

Proof of Theorem ply1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2 𝑃 = (Poly1𝑅)
2 fveq2 6768 . . . . . 6 (𝑟 = 𝑅 → (PwSer1𝑟) = (PwSer1𝑅))
3 ply1val.2 . . . . . 6 𝑆 = (PwSer1𝑅)
42, 3eqtr4di 2797 . . . . 5 (𝑟 = 𝑅 → (PwSer1𝑟) = 𝑆)
5 oveq2 7276 . . . . . 6 (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅))
65fveq2d 6772 . . . . 5 (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅)))
74, 6oveq12d 7286 . . . 4 (𝑟 = 𝑅 → ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆s (Base‘(1o mPoly 𝑅))))
8 df-ply1 21334 . . . 4 Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
9 ovex 7301 . . . 4 (𝑆s (Base‘(1o mPoly 𝑅))) ∈ V
107, 8, 9fvmpt 6869 . . 3 (𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
11 fvprc 6760 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
12 ress0 16934 . . . . 5 (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅
1311, 12eqtr4di 2797 . . . 4 𝑅 ∈ V → (Poly1𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
14 fvprc 6760 . . . . . 6 𝑅 ∈ V → (PwSer1𝑅) = ∅)
153, 14eqtrid 2791 . . . . 5 𝑅 ∈ V → 𝑆 = ∅)
1615oveq1d 7283 . . . 4 𝑅 ∈ V → (𝑆s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
1713, 16eqtr4d 2782 . . 3 𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
1810, 17pm2.61i 182 . 2 (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅)))
191, 18eqtri 2767 1 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2109  Vcvv 3430  c0 4261  cfv 6430  (class class class)co 7268  1oc1o 8274  Basecbs 16893  s cress 16922   mPoly cmpl 21090  PwSer1cps1 21327  Poly1cpl1 21329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-1cn 10913  ax-addcl 10915
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-nn 11957  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-ply1 21334
This theorem is referenced by:  ply1bas  21347  ply1crng  21350  ply1assa  21351  ply1bascl  21355  ply1plusg  21377  ply1vsca  21378  ply1mulr  21379  ply1ring  21400  ply1lmod  21404  ply1sca  21405
  Copyright terms: Public domain W3C validator