MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Visualization version   GIF version

Theorem ply1val 22134
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1val.2 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
ply1val 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))

Proof of Theorem ply1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2 𝑃 = (Poly1𝑅)
2 fveq2 6881 . . . . . 6 (𝑟 = 𝑅 → (PwSer1𝑟) = (PwSer1𝑅))
3 ply1val.2 . . . . . 6 𝑆 = (PwSer1𝑅)
42, 3eqtr4di 2789 . . . . 5 (𝑟 = 𝑅 → (PwSer1𝑟) = 𝑆)
5 oveq2 7418 . . . . . 6 (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅))
65fveq2d 6885 . . . . 5 (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅)))
74, 6oveq12d 7428 . . . 4 (𝑟 = 𝑅 → ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆s (Base‘(1o mPoly 𝑅))))
8 df-ply1 22122 . . . 4 Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
9 ovex 7443 . . . 4 (𝑆s (Base‘(1o mPoly 𝑅))) ∈ V
107, 8, 9fvmpt 6991 . . 3 (𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
11 fvprc 6873 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
12 ress0 17269 . . . . 5 (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅
1311, 12eqtr4di 2789 . . . 4 𝑅 ∈ V → (Poly1𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
14 fvprc 6873 . . . . . 6 𝑅 ∈ V → (PwSer1𝑅) = ∅)
153, 14eqtrid 2783 . . . . 5 𝑅 ∈ V → 𝑆 = ∅)
1615oveq1d 7425 . . . 4 𝑅 ∈ V → (𝑆s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
1713, 16eqtr4d 2774 . . 3 𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
1810, 17pm2.61i 182 . 2 (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅)))
191, 18eqtri 2759 1 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cfv 6536  (class class class)co 7410  1oc1o 8478  Basecbs 17233  s cress 17256   mPoly cmpl 21871  PwSer1cps1 22115  Poly1cpl1 22117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-ply1 22122
This theorem is referenced by:  ply1bas  22135  ply1basOLD  22136  ply1crng  22139  ply1assa  22140  ply1bascl  22144  ply1plusg  22164  ply1vsca  22165  ply1mulr  22166  ply1ring  22188  ply1lmod  22192  ply1sca  22193
  Copyright terms: Public domain W3C validator