![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1val | Structured version Visualization version GIF version |
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
Ref | Expression |
---|---|
ply1val | ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1val.1 | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | fveq2 6907 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = (PwSer1‘𝑅)) | |
3 | ply1val.2 | . . . . . 6 ⊢ 𝑆 = (PwSer1‘𝑅) | |
4 | 2, 3 | eqtr4di 2793 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = 𝑆) |
5 | oveq2 7439 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅)) | |
6 | 5 | fveq2d 6911 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅))) |
7 | 4, 6 | oveq12d 7449 | . . . 4 ⊢ (𝑟 = 𝑅 → ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
8 | df-ply1 22199 | . . . 4 ⊢ Poly1 = (𝑟 ∈ V ↦ ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟)))) | |
9 | ovex 7464 | . . . 4 ⊢ (𝑆 ↾s (Base‘(1o mPoly 𝑅))) ∈ V | |
10 | 7, 8, 9 | fvmpt 7016 | . . 3 ⊢ (𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
11 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
12 | ress0 17289 | . . . . 5 ⊢ (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅ | |
13 | 11, 12 | eqtr4di 2793 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
14 | fvprc 6899 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
15 | 3, 14 | eqtrid 2787 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑆 = ∅) |
16 | 15 | oveq1d 7446 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑆 ↾s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
17 | 13, 16 | eqtr4d 2778 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
19 | 1, 18 | eqtri 2763 | 1 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 Basecbs 17245 ↾s cress 17274 mPoly cmpl 21944 PwSer1cps1 22192 Poly1cpl1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-ply1 22199 |
This theorem is referenced by: ply1bas 22212 ply1basOLD 22213 ply1crng 22216 ply1assa 22217 ply1bascl 22221 ply1plusg 22241 ply1vsca 22242 ply1mulr 22243 ply1ring 22265 ply1lmod 22269 ply1sca 22270 |
Copyright terms: Public domain | W3C validator |