MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Visualization version   GIF version

Theorem ply1val 22216
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1val.2 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
ply1val 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))

Proof of Theorem ply1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2 𝑃 = (Poly1𝑅)
2 fveq2 6920 . . . . . 6 (𝑟 = 𝑅 → (PwSer1𝑟) = (PwSer1𝑅))
3 ply1val.2 . . . . . 6 𝑆 = (PwSer1𝑅)
42, 3eqtr4di 2798 . . . . 5 (𝑟 = 𝑅 → (PwSer1𝑟) = 𝑆)
5 oveq2 7456 . . . . . 6 (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅))
65fveq2d 6924 . . . . 5 (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅)))
74, 6oveq12d 7466 . . . 4 (𝑟 = 𝑅 → ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆s (Base‘(1o mPoly 𝑅))))
8 df-ply1 22204 . . . 4 Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
9 ovex 7481 . . . 4 (𝑆s (Base‘(1o mPoly 𝑅))) ∈ V
107, 8, 9fvmpt 7029 . . 3 (𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
11 fvprc 6912 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
12 ress0 17302 . . . . 5 (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅
1311, 12eqtr4di 2798 . . . 4 𝑅 ∈ V → (Poly1𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
14 fvprc 6912 . . . . . 6 𝑅 ∈ V → (PwSer1𝑅) = ∅)
153, 14eqtrid 2792 . . . . 5 𝑅 ∈ V → 𝑆 = ∅)
1615oveq1d 7463 . . . 4 𝑅 ∈ V → (𝑆s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅))))
1713, 16eqtr4d 2783 . . 3 𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅))))
1810, 17pm2.61i 182 . 2 (Poly1𝑅) = (𝑆s (Base‘(1o mPoly 𝑅)))
191, 18eqtri 2768 1 𝑃 = (𝑆s (Base‘(1o mPoly 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cfv 6573  (class class class)co 7448  1oc1o 8515  Basecbs 17258  s cress 17287   mPoly cmpl 21949  PwSer1cps1 22197  Poly1cpl1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-ply1 22204
This theorem is referenced by:  ply1bas  22217  ply1basOLD  22218  ply1crng  22221  ply1assa  22222  ply1bascl  22226  ply1plusg  22246  ply1vsca  22247  ply1mulr  22248  ply1ring  22270  ply1lmod  22274  ply1sca  22275
  Copyright terms: Public domain W3C validator