| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1val | Structured version Visualization version GIF version | ||
| Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1val | ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = (PwSer1‘𝑅)) | |
| 3 | ply1val.2 | . . . . . 6 ⊢ 𝑆 = (PwSer1‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = 𝑆) |
| 5 | oveq2 7354 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅)) | |
| 6 | 5 | fveq2d 6826 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅))) |
| 7 | 4, 6 | oveq12d 7364 | . . . 4 ⊢ (𝑟 = 𝑅 → ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 8 | df-ply1 22094 | . . . 4 ⊢ Poly1 = (𝑟 ∈ V ↦ ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟)))) | |
| 9 | ovex 7379 | . . . 4 ⊢ (𝑆 ↾s (Base‘(1o mPoly 𝑅))) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6929 | . . 3 ⊢ (𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 11 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 12 | ress0 17154 | . . . . 5 ⊢ (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅ | |
| 13 | 11, 12 | eqtr4di 2784 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
| 14 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
| 15 | 3, 14 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑆 = ∅) |
| 16 | 15 | oveq1d 7361 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑆 ↾s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
| 17 | 13, 16 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| 19 | 1, 18 | eqtri 2754 | 1 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 Basecbs 17120 ↾s cress 17141 mPoly cmpl 21843 PwSer1cps1 22087 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-ply1 22094 |
| This theorem is referenced by: ply1bas 22107 ply1basOLD 22108 ply1crng 22111 ply1assa 22112 ply1bascl 22116 ply1plusg 22136 ply1vsca 22137 ply1mulr 22138 ply1ring 22160 ply1lmod 22164 ply1sca 22165 |
| Copyright terms: Public domain | W3C validator |