| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1val | Structured version Visualization version GIF version | ||
| Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1val.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1val | ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = (PwSer1‘𝑅)) | |
| 3 | ply1val.2 | . . . . . 6 ⊢ 𝑆 = (PwSer1‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PwSer1‘𝑟) = 𝑆) |
| 5 | oveq2 7357 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1o mPoly 𝑟) = (1o mPoly 𝑅)) | |
| 6 | 5 | fveq2d 6826 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘(1o mPoly 𝑟)) = (Base‘(1o mPoly 𝑅))) |
| 7 | 4, 6 | oveq12d 7367 | . . . 4 ⊢ (𝑟 = 𝑅 → ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟))) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 8 | df-ply1 22064 | . . . 4 ⊢ Poly1 = (𝑟 ∈ V ↦ ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟)))) | |
| 9 | ovex 7382 | . . . 4 ⊢ (𝑆 ↾s (Base‘(1o mPoly 𝑅))) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6930 | . . 3 ⊢ (𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 11 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 12 | ress0 17154 | . . . . 5 ⊢ (∅ ↾s (Base‘(1o mPoly 𝑅))) = ∅ | |
| 13 | 11, 12 | eqtr4di 2782 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
| 14 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
| 15 | 3, 14 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑆 = ∅) |
| 16 | 15 | oveq1d 7364 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑆 ↾s (Base‘(1o mPoly 𝑅))) = (∅ ↾s (Base‘(1o mPoly 𝑅)))) |
| 17 | 13, 16 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅)))) |
| 18 | 10, 17 | pm2.61i 182 | . 2 ⊢ (Poly1‘𝑅) = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| 19 | 1, 18 | eqtri 2752 | 1 ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 Basecbs 17120 ↾s cress 17141 mPoly cmpl 21813 PwSer1cps1 22057 Poly1cpl1 22059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-ply1 22064 |
| This theorem is referenced by: ply1bas 22077 ply1basOLD 22078 ply1crng 22081 ply1assa 22082 ply1bascl 22086 ply1plusg 22106 ply1vsca 22107 ply1mulr 22108 ply1ring 22130 ply1lmod 22134 ply1sca 22135 |
| Copyright terms: Public domain | W3C validator |