Detailed syntax breakdown of Definition df-pm2mp
Step | Hyp | Ref
| Expression |
1 | | cpm2mp 21941 |
. 2
class
pMatToMatPoly |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cfn 8733 |
. . 3
class
Fin |
5 | | cvv 3432 |
. . 3
class
V |
6 | | vm |
. . . 4
setvar 𝑚 |
7 | 2 | cv 1538 |
. . . . . 6
class 𝑛 |
8 | 3 | cv 1538 |
. . . . . . 7
class 𝑟 |
9 | | cpl1 21348 |
. . . . . . 7
class
Poly1 |
10 | 8, 9 | cfv 6433 |
. . . . . 6
class
(Poly1‘𝑟) |
11 | | cmat 21554 |
. . . . . 6
class
Mat |
12 | 7, 10, 11 | co 7275 |
. . . . 5
class (𝑛 Mat
(Poly1‘𝑟)) |
13 | | cbs 16912 |
. . . . 5
class
Base |
14 | 12, 13 | cfv 6433 |
. . . 4
class
(Base‘(𝑛 Mat
(Poly1‘𝑟))) |
15 | | va |
. . . . 5
setvar 𝑎 |
16 | 7, 8, 11 | co 7275 |
. . . . 5
class (𝑛 Mat 𝑟) |
17 | | vq |
. . . . . 6
setvar 𝑞 |
18 | 15 | cv 1538 |
. . . . . . 7
class 𝑎 |
19 | 18, 9 | cfv 6433 |
. . . . . 6
class
(Poly1‘𝑎) |
20 | 17 | cv 1538 |
. . . . . . 7
class 𝑞 |
21 | | vk |
. . . . . . . 8
setvar 𝑘 |
22 | | cn0 12233 |
. . . . . . . 8
class
ℕ0 |
23 | 6 | cv 1538 |
. . . . . . . . . 10
class 𝑚 |
24 | 21 | cv 1538 |
. . . . . . . . . 10
class 𝑘 |
25 | | cdecpmat 21911 |
. . . . . . . . . 10
class
decompPMat |
26 | 23, 24, 25 | co 7275 |
. . . . . . . . 9
class (𝑚 decompPMat 𝑘) |
27 | | cv1 21347 |
. . . . . . . . . . 11
class
var1 |
28 | 18, 27 | cfv 6433 |
. . . . . . . . . 10
class
(var1‘𝑎) |
29 | | cmgp 19720 |
. . . . . . . . . . . 12
class
mulGrp |
30 | 20, 29 | cfv 6433 |
. . . . . . . . . . 11
class
(mulGrp‘𝑞) |
31 | | cmg 18700 |
. . . . . . . . . . 11
class
.g |
32 | 30, 31 | cfv 6433 |
. . . . . . . . . 10
class
(.g‘(mulGrp‘𝑞)) |
33 | 24, 28, 32 | co 7275 |
. . . . . . . . 9
class (𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎)) |
34 | | cvsca 16966 |
. . . . . . . . . 10
class
·𝑠 |
35 | 20, 34 | cfv 6433 |
. . . . . . . . 9
class (
·𝑠 ‘𝑞) |
36 | 26, 33, 35 | co 7275 |
. . . . . . . 8
class ((𝑚 decompPMat 𝑘)( ·𝑠
‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))) |
37 | 21, 22, 36 | cmpt 5157 |
. . . . . . 7
class (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘)(
·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎)))) |
38 | | cgsu 17151 |
. . . . . . 7
class
Σg |
39 | 20, 37, 38 | co 7275 |
. . . . . 6
class (𝑞 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠
‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))) |
40 | 17, 19, 39 | csb 3832 |
. . . . 5
class
⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘)(
·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))) |
41 | 15, 16, 40 | csb 3832 |
. . . 4
class
⦋(𝑛
Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))) |
42 | 6, 14, 41 | cmpt 5157 |
. . 3
class (𝑚 ∈ (Base‘(𝑛 Mat
(Poly1‘𝑟))) ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎)))))) |
43 | 2, 3, 4, 5, 42 | cmpo 7277 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) |
44 | 1, 43 | wceq 1539 |
1
wff
pMatToMatPoly = (𝑛 ∈
Fin, 𝑟 ∈ V ↦
(𝑚 ∈
(Base‘(𝑛 Mat
(Poly1‘𝑟))) ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) |