MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpval Structured version   Visualization version   GIF version

Theorem pm2mpval 22817
Description: Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
Distinct variable groups:   𝐵,𝑚   𝑘,𝑁,𝑚   𝑅,𝑘,𝑚   𝑚,𝑉
Allowed substitution hints:   𝐴(𝑘,𝑚)   𝐵(𝑘)   𝐶(𝑘,𝑚)   𝑃(𝑘,𝑚)   𝑄(𝑘,𝑚)   𝑇(𝑘,𝑚)   (𝑘,𝑚)   (𝑘,𝑚)   𝑉(𝑘)   𝑋(𝑘,𝑚)

Proof of Theorem pm2mpval
Dummy variables 𝑛 𝑟 𝑎 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpval.t . 2 𝑇 = (𝑁 pMatToMatPoly 𝑅)
2 df-pm2mp 22815 . . . 4 pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))))))
4 simpl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
5 fveq2 6907 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
65adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1𝑟) = (Poly1𝑅))
74, 6oveq12d 7449 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat (Poly1𝑟)) = (𝑁 Mat (Poly1𝑅)))
87fveq2d 6911 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = (Base‘(𝑁 Mat (Poly1𝑅))))
9 pm2mpval.b . . . . . . 7 𝐵 = (Base‘𝐶)
10 pm2mpval.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 pm2mpval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1211oveq2i 7442 . . . . . . . . 9 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
1310, 12eqtri 2763 . . . . . . . 8 𝐶 = (𝑁 Mat (Poly1𝑅))
1413fveq2i 6910 . . . . . . 7 (Base‘𝐶) = (Base‘(𝑁 Mat (Poly1𝑅)))
159, 14eqtri 2763 . . . . . 6 𝐵 = (Base‘(𝑁 Mat (Poly1𝑅)))
168, 15eqtr4di 2793 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = 𝐵)
1716adantl 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (Base‘(𝑛 Mat (Poly1𝑟))) = 𝐵)
18 ovex 7464 . . . . . 6 (𝑛 Mat 𝑟) ∈ V
19 fvexd 6922 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (Poly1𝑎) ∈ V)
20 simpr 484 . . . . . . . . 9 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → 𝑞 = (Poly1𝑎))
21 fveq2 6907 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → (Poly1𝑎) = (Poly1‘(𝑛 Mat 𝑟)))
2221adantr 480 . . . . . . . . 9 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (Poly1𝑎) = (Poly1‘(𝑛 Mat 𝑟)))
2320, 22eqtrd 2775 . . . . . . . 8 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → 𝑞 = (Poly1‘(𝑛 Mat 𝑟)))
2423fveq2d 6911 . . . . . . . . . 10 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → ( ·𝑠𝑞) = ( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))))
25 eqidd 2736 . . . . . . . . . 10 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑚 decompPMat 𝑘) = (𝑚 decompPMat 𝑘))
2623fveq2d 6911 . . . . . . . . . . . 12 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (mulGrp‘𝑞) = (mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))
2726fveq2d 6911 . . . . . . . . . . 11 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (.g‘(mulGrp‘𝑞)) = (.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))))
28 eqidd 2736 . . . . . . . . . . 11 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → 𝑘 = 𝑘)
29 fveq2 6907 . . . . . . . . . . . 12 (𝑎 = (𝑛 Mat 𝑟) → (var1𝑎) = (var1‘(𝑛 Mat 𝑟)))
3029adantr 480 . . . . . . . . . . 11 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (var1𝑎) = (var1‘(𝑛 Mat 𝑟)))
3127, 28, 30oveq123d 7452 . . . . . . . . . 10 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)) = (𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))
3224, 25, 31oveq123d 7452 . . . . . . . . 9 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))) = ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))
3332mpteq2dv 5250 . . . . . . . 8 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))) = (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))
3423, 33oveq12d 7449 . . . . . . 7 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))))
3519, 34csbied 3946 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → (Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))))
3618, 35csbie 3944 . . . . 5 (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))
37 oveq12 7440 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3837fveq2d 6911 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1‘(𝑛 Mat 𝑟)) = (Poly1‘(𝑁 Mat 𝑅)))
39 pm2mpval.q . . . . . . . . 9 𝑄 = (Poly1𝐴)
40 pm2mpval.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
4140fveq2i 6910 . . . . . . . . 9 (Poly1𝐴) = (Poly1‘(𝑁 Mat 𝑅))
4239, 41eqtri 2763 . . . . . . . 8 𝑄 = (Poly1‘(𝑁 Mat 𝑅))
4338, 42eqtr4di 2793 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1‘(𝑛 Mat 𝑟)) = 𝑄)
4438fveq2d 6911 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))) = ( ·𝑠 ‘(Poly1‘(𝑁 Mat 𝑅))))
45 pm2mpval.m . . . . . . . . . . 11 = ( ·𝑠𝑄)
4642fveq2i 6910 . . . . . . . . . . 11 ( ·𝑠𝑄) = ( ·𝑠 ‘(Poly1‘(𝑁 Mat 𝑅)))
4745, 46eqtri 2763 . . . . . . . . . 10 = ( ·𝑠 ‘(Poly1‘(𝑁 Mat 𝑅)))
4844, 47eqtr4di 2793 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))) = )
49 eqidd 2736 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 decompPMat 𝑘) = (𝑚 decompPMat 𝑘))
5038fveq2d 6911 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘(Poly1‘(𝑛 Mat 𝑟))) = (mulGrp‘(Poly1‘(𝑁 Mat 𝑅))))
5150fveq2d 6911 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))) = (.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅)))))
52 pm2mpval.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑄))
5342fveq2i 6910 . . . . . . . . . . . . 13 (mulGrp‘𝑄) = (mulGrp‘(Poly1‘(𝑁 Mat 𝑅)))
5453fveq2i 6910 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅))))
5552, 54eqtri 2763 . . . . . . . . . . 11 = (.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅))))
5651, 55eqtr4di 2793 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))) = )
57 eqidd 2736 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑘 = 𝑘)
5837fveq2d 6911 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (var1‘(𝑛 Mat 𝑟)) = (var1‘(𝑁 Mat 𝑅)))
59 pm2mpval.x . . . . . . . . . . . 12 𝑋 = (var1𝐴)
6040fveq2i 6910 . . . . . . . . . . . 12 (var1𝐴) = (var1‘(𝑁 Mat 𝑅))
6159, 60eqtri 2763 . . . . . . . . . . 11 𝑋 = (var1‘(𝑁 Mat 𝑅))
6258, 61eqtr4di 2793 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (var1‘(𝑛 Mat 𝑟)) = 𝑋)
6356, 57, 62oveq123d 7452 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))) = (𝑘 𝑋))
6448, 49, 63oveq123d 7452 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))) = ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))
6564mpteq2dv 5250 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))) = (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))
6643, 65oveq12d 7449 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))))
6766adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))))
6836, 67eqtrid 2787 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))))
6917, 68mpteq12dv 5239 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))))) = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
70 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
71 elex 3499 . . . 4 (𝑅𝑉𝑅 ∈ V)
7271adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
739fvexi 6921 . . . . 5 𝐵 ∈ V
7473mptex 7243 . . . 4 (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))) ∈ V
7574a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))) ∈ V)
763, 69, 70, 72, 75ovmpod 7585 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 pMatToMatPoly 𝑅) = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
771, 76eqtrid 2787 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  csb 3908  cmpt 5231  cfv 6563  (class class class)co 7431  cmpo 7433  Fincfn 8984  0cn0 12524  Basecbs 17245   ·𝑠 cvsca 17302   Σg cgsu 17487  .gcmg 19098  mulGrpcmgp 20152  var1cv1 22193  Poly1cpl1 22194   Mat cmat 22427   decompPMat cdecpmat 22784   pMatToMatPoly cpm2mp 22814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm2mp 22815
This theorem is referenced by:  pm2mpfval  22818  pm2mpf  22820
  Copyright terms: Public domain W3C validator