Step | Hyp | Ref
| Expression |
1 | | pm2mpval.t |
. 2
⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
2 | | df-pm2mp 21850 |
. . . 4
⊢
pMatToMatPoly = (𝑛 ∈
Fin, 𝑟 ∈ V ↦
(𝑚 ∈
(Base‘(𝑛 Mat
(Poly1‘𝑟))) ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) |
3 | 2 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎)))))))) |
4 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
5 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
6 | 5 | adantl 481 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
7 | 4, 6 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat (Poly1‘𝑟)) = (𝑁 Mat (Poly1‘𝑅))) |
8 | 7 | fveq2d 6760 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1‘𝑟))) = (Base‘(𝑁 Mat
(Poly1‘𝑅)))) |
9 | | pm2mpval.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
10 | | pm2mpval.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
11 | | pm2mpval.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
12 | 11 | oveq2i 7266 |
. . . . . . . . 9
⊢ (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1‘𝑅)) |
13 | 10, 12 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐶 = (𝑁 Mat (Poly1‘𝑅)) |
14 | 13 | fveq2i 6759 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘(𝑁 Mat
(Poly1‘𝑅))) |
15 | 9, 14 | eqtri 2766 |
. . . . . 6
⊢ 𝐵 = (Base‘(𝑁 Mat
(Poly1‘𝑅))) |
16 | 8, 15 | eqtr4di 2797 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1‘𝑟))) = 𝐵) |
17 | 16 | adantl 481 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (Base‘(𝑛 Mat (Poly1‘𝑟))) = 𝐵) |
18 | | ovex 7288 |
. . . . . 6
⊢ (𝑛 Mat 𝑟) ∈ V |
19 | | fvexd 6771 |
. . . . . . 7
⊢ (𝑎 = (𝑛 Mat 𝑟) → (Poly1‘𝑎) ∈ V) |
20 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → 𝑞 = (Poly1‘𝑎)) |
21 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑛 Mat 𝑟) → (Poly1‘𝑎) =
(Poly1‘(𝑛
Mat 𝑟))) |
22 | 21 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (Poly1‘𝑎) =
(Poly1‘(𝑛
Mat 𝑟))) |
23 | 20, 22 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → 𝑞 = (Poly1‘(𝑛 Mat 𝑟))) |
24 | 23 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (
·𝑠 ‘𝑞) = ( ·𝑠
‘(Poly1‘(𝑛 Mat 𝑟)))) |
25 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (𝑚 decompPMat 𝑘) = (𝑚 decompPMat 𝑘)) |
26 | 23 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (mulGrp‘𝑞) =
(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))) |
27 | 26 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) →
(.g‘(mulGrp‘𝑞)) =
(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))) |
28 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → 𝑘 = 𝑘) |
29 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑛 Mat 𝑟) → (var1‘𝑎) =
(var1‘(𝑛
Mat 𝑟))) |
30 | 29 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (var1‘𝑎) =
(var1‘(𝑛
Mat 𝑟))) |
31 | 27, 28, 30 | oveq123d 7276 |
. . . . . . . . . 10
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎)) = (𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))) |
32 | 24, 25, 31 | oveq123d 7276 |
. . . . . . . . 9
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → ((𝑚 decompPMat 𝑘)( ·𝑠
‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))) = ((𝑚 decompPMat 𝑘)( ·𝑠
‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))) |
33 | 32 | mpteq2dv 5172 |
. . . . . . . 8
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠
‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎)))) = (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠
‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))) |
34 | 23, 33 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1‘𝑎)) → (𝑞 Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘)(
·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))) =
((Poly1‘(𝑛
Mat 𝑟))
Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠
‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))) |
35 | 19, 34 | csbied 3866 |
. . . . . 6
⊢ (𝑎 = (𝑛 Mat 𝑟) →
⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘)(
·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))) =
((Poly1‘(𝑛
Mat 𝑟))
Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠
‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))) |
36 | 18, 35 | csbie 3864 |
. . . . 5
⊢
⦋(𝑛
Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))) = ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠
‘(Poly1‘(𝑛 Mat
𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))) |
37 | | oveq12 7264 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
38 | 37 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘(𝑛 Mat 𝑟)) = (Poly1‘(𝑁 Mat 𝑅))) |
39 | | pm2mpval.q |
. . . . . . . . 9
⊢ 𝑄 = (Poly1‘𝐴) |
40 | | pm2mpval.a |
. . . . . . . . . 10
⊢ 𝐴 = (𝑁 Mat 𝑅) |
41 | 40 | fveq2i 6759 |
. . . . . . . . 9
⊢
(Poly1‘𝐴) = (Poly1‘(𝑁 Mat 𝑅)) |
42 | 39, 41 | eqtri 2766 |
. . . . . . . 8
⊢ 𝑄 =
(Poly1‘(𝑁
Mat 𝑅)) |
43 | 38, 42 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Poly1‘(𝑛 Mat 𝑟)) = 𝑄) |
44 | 38 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))) = ( ·𝑠
‘(Poly1‘(𝑁 Mat 𝑅)))) |
45 | | pm2mpval.m |
. . . . . . . . . . 11
⊢ ∗ = (
·𝑠 ‘𝑄) |
46 | 42 | fveq2i 6759 |
. . . . . . . . . . 11
⊢ (
·𝑠 ‘𝑄) = ( ·𝑠
‘(Poly1‘(𝑁 Mat 𝑅))) |
47 | 45, 46 | eqtri 2766 |
. . . . . . . . . 10
⊢ ∗ = (
·𝑠 ‘(Poly1‘(𝑁 Mat 𝑅))) |
48 | 44, 47 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (
·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))) = ∗ ) |
49 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 decompPMat 𝑘) = (𝑚 decompPMat 𝑘)) |
50 | 38 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) →
(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))) =
(mulGrp‘(Poly1‘(𝑁 Mat 𝑅)))) |
51 | 50 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) →
(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))) =
(.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅))))) |
52 | | pm2mpval.e |
. . . . . . . . . . . 12
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
53 | 42 | fveq2i 6759 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝑄) =
(mulGrp‘(Poly1‘(𝑁 Mat 𝑅))) |
54 | 53 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢
(.g‘(mulGrp‘𝑄)) =
(.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅)))) |
55 | 52, 54 | eqtri 2766 |
. . . . . . . . . . 11
⊢ ↑ =
(.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅)))) |
56 | 51, 55 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) →
(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))) = ↑ ) |
57 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑘 = 𝑘) |
58 | 37 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (var1‘(𝑛 Mat 𝑟)) = (var1‘(𝑁 Mat 𝑅))) |
59 | | pm2mpval.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (var1‘𝐴) |
60 | 40 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢
(var1‘𝐴) = (var1‘(𝑁 Mat 𝑅)) |
61 | 59, 60 | eqtri 2766 |
. . . . . . . . . . 11
⊢ 𝑋 = (var1‘(𝑁 Mat 𝑅)) |
62 | 58, 61 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (var1‘(𝑛 Mat 𝑟)) = 𝑋) |
63 | 56, 57, 62 | oveq123d 7276 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))) =
(𝑘 ↑ 𝑋)) |
64 | 48, 49, 63 | oveq123d 7276 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑚 decompPMat 𝑘)( ·𝑠
‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))) =
((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) |
65 | 64 | mpteq2dv 5172 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠
‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))) =
(𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
66 | 43, 65 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘)(
·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))
= (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
67 | 66 | adantl 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘)(
·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))
= (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
68 | 36, 67 | eqtrid 2790 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → ⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
69 | 17, 68 | mpteq12dv 5161 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎)))))) = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
70 | | simpl 482 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
71 | | elex 3440 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
72 | 71 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
73 | 9 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
74 | 73 | mptex 7081 |
. . . 4
⊢ (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) ∈ V |
75 | 74 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) ∈ V) |
76 | 3, 69, 70, 72, 75 | ovmpod 7403 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 pMatToMatPoly 𝑅) = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
77 | 1, 76 | eqtrid 2790 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑚 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |