MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpval Structured version   Visualization version   GIF version

Theorem pm2mpval 22698
Description: Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
Distinct variable groups:   𝐵,𝑚   𝑘,𝑁,𝑚   𝑅,𝑘,𝑚   𝑚,𝑉
Allowed substitution hints:   𝐴(𝑘,𝑚)   𝐵(𝑘)   𝐶(𝑘,𝑚)   𝑃(𝑘,𝑚)   𝑄(𝑘,𝑚)   𝑇(𝑘,𝑚)   (𝑘,𝑚)   (𝑘,𝑚)   𝑉(𝑘)   𝑋(𝑘,𝑚)

Proof of Theorem pm2mpval
Dummy variables 𝑛 𝑟 𝑎 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpval.t . 2 𝑇 = (𝑁 pMatToMatPoly 𝑅)
2 df-pm2mp 22696 . . . 4 pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))))))
4 simpl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
5 fveq2 6826 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
65adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1𝑟) = (Poly1𝑅))
74, 6oveq12d 7371 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat (Poly1𝑟)) = (𝑁 Mat (Poly1𝑅)))
87fveq2d 6830 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = (Base‘(𝑁 Mat (Poly1𝑅))))
9 pm2mpval.b . . . . . . 7 𝐵 = (Base‘𝐶)
10 pm2mpval.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
11 pm2mpval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1211oveq2i 7364 . . . . . . . . 9 (𝑁 Mat 𝑃) = (𝑁 Mat (Poly1𝑅))
1310, 12eqtri 2752 . . . . . . . 8 𝐶 = (𝑁 Mat (Poly1𝑅))
1413fveq2i 6829 . . . . . . 7 (Base‘𝐶) = (Base‘(𝑁 Mat (Poly1𝑅)))
159, 14eqtri 2752 . . . . . 6 𝐵 = (Base‘(𝑁 Mat (Poly1𝑅)))
168, 15eqtr4di 2782 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat (Poly1𝑟))) = 𝐵)
1716adantl 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (Base‘(𝑛 Mat (Poly1𝑟))) = 𝐵)
18 ovex 7386 . . . . . 6 (𝑛 Mat 𝑟) ∈ V
19 fvexd 6841 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (Poly1𝑎) ∈ V)
20 simpr 484 . . . . . . . . 9 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → 𝑞 = (Poly1𝑎))
21 fveq2 6826 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → (Poly1𝑎) = (Poly1‘(𝑛 Mat 𝑟)))
2221adantr 480 . . . . . . . . 9 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (Poly1𝑎) = (Poly1‘(𝑛 Mat 𝑟)))
2320, 22eqtrd 2764 . . . . . . . 8 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → 𝑞 = (Poly1‘(𝑛 Mat 𝑟)))
2423fveq2d 6830 . . . . . . . . . 10 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → ( ·𝑠𝑞) = ( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))))
25 eqidd 2730 . . . . . . . . . 10 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑚 decompPMat 𝑘) = (𝑚 decompPMat 𝑘))
2623fveq2d 6830 . . . . . . . . . . . 12 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (mulGrp‘𝑞) = (mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))
2726fveq2d 6830 . . . . . . . . . . 11 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (.g‘(mulGrp‘𝑞)) = (.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))))
28 eqidd 2730 . . . . . . . . . . 11 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → 𝑘 = 𝑘)
29 fveq2 6826 . . . . . . . . . . . 12 (𝑎 = (𝑛 Mat 𝑟) → (var1𝑎) = (var1‘(𝑛 Mat 𝑟)))
3029adantr 480 . . . . . . . . . . 11 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (var1𝑎) = (var1‘(𝑛 Mat 𝑟)))
3127, 28, 30oveq123d 7374 . . . . . . . . . 10 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)) = (𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))
3224, 25, 31oveq123d 7374 . . . . . . . . 9 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))) = ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))
3332mpteq2dv 5189 . . . . . . . 8 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))) = (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))
3423, 33oveq12d 7371 . . . . . . 7 ((𝑎 = (𝑛 Mat 𝑟) ∧ 𝑞 = (Poly1𝑎)) → (𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))))
3519, 34csbied 3889 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → (Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))))
3618, 35csbie 3888 . . . . 5 (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))))
37 oveq12 7362 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3837fveq2d 6830 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1‘(𝑛 Mat 𝑟)) = (Poly1‘(𝑁 Mat 𝑅)))
39 pm2mpval.q . . . . . . . . 9 𝑄 = (Poly1𝐴)
40 pm2mpval.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
4140fveq2i 6829 . . . . . . . . 9 (Poly1𝐴) = (Poly1‘(𝑁 Mat 𝑅))
4239, 41eqtri 2752 . . . . . . . 8 𝑄 = (Poly1‘(𝑁 Mat 𝑅))
4338, 42eqtr4di 2782 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Poly1‘(𝑛 Mat 𝑟)) = 𝑄)
4438fveq2d 6830 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))) = ( ·𝑠 ‘(Poly1‘(𝑁 Mat 𝑅))))
45 pm2mpval.m . . . . . . . . . . 11 = ( ·𝑠𝑄)
4642fveq2i 6829 . . . . . . . . . . 11 ( ·𝑠𝑄) = ( ·𝑠 ‘(Poly1‘(𝑁 Mat 𝑅)))
4745, 46eqtri 2752 . . . . . . . . . 10 = ( ·𝑠 ‘(Poly1‘(𝑁 Mat 𝑅)))
4844, 47eqtr4di 2782 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟))) = )
49 eqidd 2730 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 decompPMat 𝑘) = (𝑚 decompPMat 𝑘))
5038fveq2d 6830 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘(Poly1‘(𝑛 Mat 𝑟))) = (mulGrp‘(Poly1‘(𝑁 Mat 𝑅))))
5150fveq2d 6830 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))) = (.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅)))))
52 pm2mpval.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑄))
5342fveq2i 6829 . . . . . . . . . . . . 13 (mulGrp‘𝑄) = (mulGrp‘(Poly1‘(𝑁 Mat 𝑅)))
5453fveq2i 6829 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅))))
5552, 54eqtri 2752 . . . . . . . . . . 11 = (.g‘(mulGrp‘(Poly1‘(𝑁 Mat 𝑅))))
5651, 55eqtr4di 2782 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟)))) = )
57 eqidd 2730 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑘 = 𝑘)
5837fveq2d 6830 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (var1‘(𝑛 Mat 𝑟)) = (var1‘(𝑁 Mat 𝑅)))
59 pm2mpval.x . . . . . . . . . . . 12 𝑋 = (var1𝐴)
6040fveq2i 6829 . . . . . . . . . . . 12 (var1𝐴) = (var1‘(𝑁 Mat 𝑅))
6159, 60eqtri 2752 . . . . . . . . . . 11 𝑋 = (var1‘(𝑁 Mat 𝑅))
6258, 61eqtr4di 2782 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (var1‘(𝑛 Mat 𝑟)) = 𝑋)
6356, 57, 62oveq123d 7374 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))) = (𝑘 𝑋))
6448, 49, 63oveq123d 7374 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))) = ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))
6564mpteq2dv 5189 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟))))) = (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))
6643, 65oveq12d 7371 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))))
6766adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → ((Poly1‘(𝑛 Mat 𝑟)) Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘(Poly1‘(𝑛 Mat 𝑟)))(𝑘(.g‘(mulGrp‘(Poly1‘(𝑛 Mat 𝑟))))(var1‘(𝑛 Mat 𝑟)))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))))
6836, 67eqtrid 2776 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎))))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))))
6917, 68mpteq12dv 5182 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))))) = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
70 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
71 elex 3459 . . . 4 (𝑅𝑉𝑅 ∈ V)
7271adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
739fvexi 6840 . . . . 5 𝐵 ∈ V
7473mptex 7163 . . . 4 (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))) ∈ V
7574a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))) ∈ V)
763, 69, 70, 72, 75ovmpod 7505 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 pMatToMatPoly 𝑅) = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
771, 76eqtrid 2776 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  cmpt 5176  cfv 6486  (class class class)co 7353  cmpo 7355  Fincfn 8879  0cn0 12402  Basecbs 17138   ·𝑠 cvsca 17183   Σg cgsu 17362  .gcmg 18964  mulGrpcmgp 20043  var1cv1 22076  Poly1cpl1 22077   Mat cmat 22310   decompPMat cdecpmat 22665   pMatToMatPoly cpm2mp 22695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pm2mp 22696
This theorem is referenced by:  pm2mpfval  22699  pm2mpf  22701
  Copyright terms: Public domain W3C validator