| Metamath
Proof Explorer Theorem List (p. 224 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
In the following, the square matrix algebra is defined as extensible structure Mat. In this subsection, however, only square matrices and their basic properties are regarded. This includes showing that (𝑁 Mat 𝑅) is a left module, see matlmod 22323. That (𝑁 Mat 𝑅) is a ring and an associative algebra is shown in the next subsection, after theorems about the identity matrix are available. Nevertheless, (𝑁 Mat 𝑅) is called "matrix ring" or "matrix algebra" already in this subsection. | ||
| Syntax | cmat 22301 | Syntax for the square matrix algebra. |
| class Mat | ||
| Definition | df-mat 22302* | Define the algebra of n x n matrices over a ring r. (Contributed by Stefan O'Rear, 31-Aug-2015.) |
| ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | ||
| Theorem | matbas0pc 22303 | There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018.) |
| ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
| Theorem | matbas0 22304 | There is no matrix for a not finite dimension or a proper class as the underlying ring. (Contributed by AV, 28-Dec-2018.) |
| ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
| Theorem | matval 22305 | Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) | ||
| Theorem | matrcl 22306 | Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | ||
| Theorem | matbas 22307 | The matrix ring has the same base set as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Base‘𝐺) = (Base‘𝐴)) | ||
| Theorem | matplusg 22308 | The matrix ring has the same addition as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (+g‘𝐺) = (+g‘𝐴)) | ||
| Theorem | matsca 22309 | The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) | ||
| Theorem | matvsca 22310 | The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝐴)) | ||
| Theorem | mat0 22311 | The matrix ring has the same zero as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (0g‘𝐺) = (0g‘𝐴)) | ||
| Theorem | matinvg 22312 | The matrix ring has the same additive inverse as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (invg‘𝐺) = (invg‘𝐴)) | ||
| Theorem | mat0op 22313* | Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 0 )) | ||
| Theorem | matsca2 22314 | The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) | ||
| Theorem | matbas2 22315 | The base set of the matrix ring as a set exponential. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 16-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) | ||
| Theorem | matbas2i 22316 | A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁))) | ||
| Theorem | matbas2d 22317* | The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵) | ||
| Theorem | eqmat 22318* | Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗))) | ||
| Theorem | matecl 22319 | Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) | ||
| Theorem | matecld 22320 | Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring, deduction form. (Contributed by AV, 27-Nov-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) ∈ 𝐾) | ||
| Theorem | matplusg2 22321 | Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ✚ = (+g‘𝐴) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
| Theorem | matvsca2 22322 | Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝑅) & ⊢ 𝐶 = (𝑁 × 𝑁) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌)) | ||
| Theorem | matlmod 22323 | The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) | ||
| Theorem | matgrp 22324 | The matrix ring is a group. (Contributed by AV, 21-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp) | ||
| Theorem | matvscl 22325 | Closure of the scalar multiplication in the matrix ring. (lmodvscl 20791 analog.) (Contributed by AV, 27-Nov-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (𝐶 · 𝑋) ∈ 𝐵) | ||
| Theorem | matsubg 22326 | The matrix ring has the same addition as its underlying group. (Contributed by AV, 2-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (-g‘𝐺) = (-g‘𝐴)) | ||
| Theorem | matplusgcell 22327 | Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ✚ = (+g‘𝐴) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) | ||
| Theorem | matsubgcell 22328 | Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (-g‘𝐴) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) − (𝐼𝑌𝐽))) | ||
| Theorem | matinvgcell 22329 | Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = (invg‘𝑅) & ⊢ 𝑊 = (invg‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑊‘𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽))) | ||
| Theorem | matvscacell 22330 | Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) | ||
| Theorem | matgsum 22331* | Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐴 Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
The main result of this subsection are the theorems showing that (𝑁 Mat 𝑅) is a ring (see matring 22337) and an associative algebra (see matassa 22338). Additionally, theorems for the identity matrix and transposed matrices are provided. | ||
| Theorem | matmulr 22332 | Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) | ||
| Theorem | mamumat1cl 22333* | The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) | ||
| Theorem | mat1comp 22334* | The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) | ||
| Theorem | mamulid 22335* | The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) ⇒ ⊢ (𝜑 → (𝐼𝐹𝑋) = 𝑋) | ||
| Theorem | mamurid 22336* | The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑁, 𝑀, 𝑀〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝐼) = 𝑋) | ||
| Theorem | matring 22337 | Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) | ||
| Theorem | matassa 22338 | Existence of the matrix algebra, see also the statement in [Lang] p. 505: "Then Matn(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
| Theorem | matmulcell 22339* | Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ × = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) | ||
| Theorem | mpomatmul 22340* | Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝑋 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐶) & ⊢ 𝑌 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐸) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐸 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑘 = 𝑖 ∧ 𝑚 = 𝑗)) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ (𝑚 = 𝑖 ∧ 𝑙 = 𝑗)) → 𝐹 = 𝐸) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑚 ∈ 𝑁) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑚 ∈ 𝑁 ↦ (𝐷 · 𝐹))))) | ||
| Theorem | mat1 22341* | Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) | ||
| Theorem | mat1ov 22342 | Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ 𝑈 = (1r‘𝐴) ⇒ ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) | ||
| Theorem | mat1bas 22343 | The identity matrix is a matrix. (Contributed by AV, 15-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ 𝐵) | ||
| Theorem | matsc 22344* | The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) | ||
| Theorem | ofco2 22345 | Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻))) | ||
| Theorem | oftpos 22346 | The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) | ||
| Theorem | mattposcl 22347 | The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) | ||
| Theorem | mattpostpos 22348 | The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀) | ||
| Theorem | mattposvs 22349 | The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌)) | ||
| Theorem | mattpos1 22350 | The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos 1 = 1 ) | ||
| Theorem | tposmap 22351 | The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) | ||
| Theorem | mamutpos 22352 | Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝑃, 𝑁, 𝑀〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋)) | ||
| Theorem | mattposm 22353 | Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋)) | ||
| Theorem | matgsumcl 22354* | Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) | ||
| Theorem | madetsumid 22355* | The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) | ||
| Theorem | matepmcl 22356* | Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) | ||
| Theorem | matepm2cl 22357* | Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) | ||
| Theorem | madetsmelbas 22358* | A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) | ||
| Theorem | madetsmelbas2 22359* | A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛))))) ∈ (Base‘𝑅)) | ||
As already mentioned before, and shown in mat0dimbas0 22360, the empty set is the sole zero-dimensional matrix (also called "empty matrix", see Wikipedia https://en.wikipedia.org/wiki/Matrix_(mathematics)#Empty_matrices). 22360 In the following, some properties of the empty matrix are shown, especially that the empty matrix over an arbitrary ring forms a commutative ring, see mat0dimcrng 22364. For the one-dimensional case, it can be shown that a ring of matrices with dimension 1 is isomorphic to the underlying ring, see mat1ric 22381. | ||
| Theorem | mat0dimbas0 22360 | The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019.) |
| ⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | ||
| Theorem | mat0dim0 22361 | The zero of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (0g‘𝐴) = ∅) | ||
| Theorem | mat0dimid 22362 | The identity of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (1r‘𝐴) = ∅) | ||
| Theorem | mat0dimscm 22363 | The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | ||
| Theorem | mat0dimcrng 22364 | The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) | ||
| Theorem | mat1dimelbas 22365* | A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 𝑀 = {〈𝑂, 𝑟〉})) | ||
| Theorem | mat1dimbas 22366 | A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) | ||
| Theorem | mat1dim0 22367 | The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (0g‘𝐴) = {〈𝑂, (0g‘𝑅)〉}) | ||
| Theorem | mat1dimid 22368 | The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {〈𝑂, (1r‘𝑅)〉}) | ||
| Theorem | mat1dimscm 22369 | The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) | ||
| Theorem | mat1dimmul 22370 | The ring multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉} (.r‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) | ||
| Theorem | mat1dimcrng 22371 | The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → 𝐴 ∈ CRing) | ||
| Theorem | mat1f1o 22372* | There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) | ||
| Theorem | mat1rhmval 22373* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) | ||
| Theorem | mat1rhmelval 22374* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐸(𝐹‘𝑋)𝐸) = 𝑋) | ||
| Theorem | mat1rhmcl 22375* | The value of the ring homomorphism 𝐹 is a matrix with dimension 1. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) ∈ 𝐵) | ||
| Theorem | mat1f 22376* | There is a function from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾⟶𝐵) | ||
| Theorem | mat1ghm 22377* | There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴)) | ||
| Theorem | mat1mhm 22378* | There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
| Theorem | mat1rhm 22379* | There is a ring homomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 RingHom 𝐴)) | ||
| Theorem | mat1rngiso 22380* | There is a ring isomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 RingIso 𝐴)) | ||
| Theorem | mat1ric 22381 | A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ≃𝑟 𝐴) | ||
According to Wikipedia ("Diagonal Matrix", 8-Dec-2019, https://en.wikipedia.org/wiki/Diagonal_matrix): "In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices." The diagonal matrices are mentioned in [Lang] p. 576, but without giving them a dedicated definition. Furthermore, "A diagonal matrix with all its main diagonal entries equal is a scalar matrix, that is, a scalar multiple 𝜆 ∗ 𝐼 of the identity matrix 𝐼. Its effect on a vector is scalar multiplication by 𝜆 [see scmatscm 22407!]". The scalar multiples of the identity matrix are mentioned in [Lang] p. 504, but without giving them a special name. The main results of this subsection are the definitions of the sets of diagonal and scalar matrices (df-dmat 22384 and df-scmat 22385), basic properties of (elements of) these sets, and theorems showing that the diagonal matrices form a subring of the ring of square matrices (dmatsrng 22395), that the scalar matrices form a subring of the ring of square matrices (scmatsrng 22414), that the scalar matrices form a subring of the ring of diagonal matrices (scmatsrng1 22417) and that the ring of scalar matrices over a commutative ring is a commutative ring (scmatcrng 22415). | ||
| Syntax | cdmat 22382 | Extend class notation for the algebra of diagonal matrices. |
| class DMat | ||
| Syntax | cscmat 22383 | Extend class notation for the algebra of scalar matrices. |
| class ScMat | ||
| Definition | df-dmat 22384* | Define the set of n x n diagonal (square) matrices over a set (usually a ring) r, see definition in [Roman] p. 4 or Definition 3.12 in [Hefferon] p. 240. (Contributed by AV, 8-Dec-2019.) |
| ⊢ DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) | ||
| Definition | df-scmat 22385* | Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in [Connell] p. 57: "A scalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cIn". (Contributed by AV, 8-Dec-2019.) |
| ⊢ ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘𝑎)(1r‘𝑎))}) | ||
| Theorem | dmatval 22386* | The set of 𝑁 x 𝑁 diagonal matrices over (a ring) 𝑅. (Contributed by AV, 8-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | ||
| Theorem | dmatel 22387* | A 𝑁 x 𝑁 diagonal matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) | ||
| Theorem | dmatmat 22388 | An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) | ||
| Theorem | dmatid 22389 | The identity matrix is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) | ||
| Theorem | dmatelnd 22390 | An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽)) → (𝐼𝑋𝐽) = 0 ) | ||
| Theorem | dmatmul 22391* | The product of two diagonal matrices. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) | ||
| Theorem | dmatsubcl 22392 | The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(-g‘𝐴)𝑌) ∈ 𝐷) | ||
| Theorem | dmatsgrp 22393 | The set of diagonal matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) | ||
| Theorem | dmatmulcl 22394 | The product of two diagonal matrices is a diagonal matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) ∈ 𝐷) | ||
| Theorem | dmatsrng 22395 | The set of diagonal matrices is a subring of the matrix ring/algebra. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) | ||
| Theorem | dmatcrng 22396 | The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝐷) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing) | ||
| Theorem | dmatscmcl 22397 | The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑀 ∈ 𝐷)) → (𝐶 ∗ 𝑀) ∈ 𝐷) | ||
| Theorem | scmatval 22398* | The set of 𝑁 x 𝑁 scalar matrices over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) | ||
| Theorem | scmatel 22399* | An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) | ||
| Theorem | scmatscmid 22400* | A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |