HomeHome Metamath Proof Explorer
Theorem List (p. 224 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30166)
  Hilbert Space Explorer  Hilbert Space Explorer
(30167-31689)
  Users' Mathboxes  Users' Mathboxes
(31690-47842)
 

Theorem List for Metamath Proof Explorer - 22301-22400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempm2mpcoe1 22301 A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 5-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โˆง (๐‘€ โˆˆ ๐ต โˆง ๐พ โˆˆ โ„•0)) โ†’ ((coe1โ€˜(๐‘‡โ€˜๐‘€))โ€˜๐พ) = (๐‘€ decompPMat ๐พ))
 
Theoremidpm2idmp 22302 The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ (๐‘‡โ€˜(1rโ€˜๐ถ)) = (1rโ€˜๐‘„))
 
Theoremmptcoe1matfsupp 22303* The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐ผ โˆˆ ๐‘ โˆง ๐ฝ โˆˆ ๐‘) โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ (๐ผ((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐ฝ)) finSupp (0gโ€˜๐‘…))
 
Theoremmply1topmatcllem 22304* Lemma for mply1topmatcl 22306. (Contributed by AV, 6-Oct-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐ผ โˆˆ ๐‘ โˆง ๐ฝ โˆˆ ๐‘) โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐ผ((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐ฝ) ยท (๐‘˜๐ธ๐‘Œ))) finSupp (0gโ€˜๐‘ƒ))
 
Theoremmply1topmatval 22305* A polynomial over matrices transformed into a polynomial matrix. ๐ผ is the inverse function of the transformation ๐‘‡ of polynomial matrices into polynomials over matrices: (๐‘‡โ€˜(๐ผโ€˜๐‘‚)) = ๐‘‚) (see mp2pm2mp 22312). (Contributed by AV, 6-Oct-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    โ‡’   ((๐‘ โˆˆ ๐‘‰ โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐ผโ€˜๐‘‚) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))
 
Theoremmply1topmatcl 22306* A polynomial over matrices transformed into a polynomial matrix is a polynomial matrix. (Contributed by AV, 6-Oct-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐ผโ€˜๐‘‚) โˆˆ ๐ต)
 
Theoremmp2pm2mplem1 22307* Lemma 1 for mp2pm2mp 22312. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐ผโ€˜๐‘‚) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))
 
Theoremmp2pm2mplem2 22308* Lemma 2 for mp2pm2mp 22312. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))) โˆˆ ๐ต)
 
Theoremmp2pm2mplem3 22309* Lemma 3 for mp2pm2mp 22312. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐ผโ€˜๐‘‚) decompPMat ๐พ) = (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ ((coe1โ€˜(๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘‚)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ)))))โ€˜๐พ)))
 
Theoremmp2pm2mplem4 22310* Lemma 4 for mp2pm2mp 22312. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐ผโ€˜๐‘‚) decompPMat ๐พ) = ((coe1โ€˜๐‘‚)โ€˜๐พ))
 
Theoremmp2pm2mplem5 22311* Lemma 5 for mp2pm2mp 22312. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ (((๐ผโ€˜๐‘‚) decompPMat ๐‘˜) โˆ— (๐‘˜ โ†‘ ๐‘‹))) finSupp (0gโ€˜๐‘„))
 
Theoremmp2pm2mp 22312* A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &   ๐ผ = (๐‘ โˆˆ ๐ฟ โ†ฆ (๐‘– โˆˆ ๐‘, ๐‘— โˆˆ ๐‘ โ†ฆ (๐‘ƒ ฮฃg (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘–((coe1โ€˜๐‘)โ€˜๐‘˜)๐‘—) ยท (๐‘˜๐ธ๐‘Œ))))))    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘‚ โˆˆ ๐ฟ) โ†’ (๐‘‡โ€˜(๐ผโ€˜๐‘‚)) = ๐‘‚)
 
Theorempm2mpghmlem2 22313* Lemma 2 for pm2mpghm 22317. (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐‘˜ โˆˆ โ„•0 โ†ฆ ((๐‘€ decompPMat ๐‘˜) โˆ— (๐‘˜ โ†‘ ๐‘‹))) finSupp (0gโ€˜๐‘„))
 
Theorempm2mpghmlem1 22314 Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐‘€ decompPMat ๐พ) โˆ— (๐พ โ†‘ ๐‘‹)) โˆˆ ๐ฟ)
 
Theorempm2mpfo 22315 The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 6-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐‘‡:๐ตโ€“ontoโ†’๐ฟ)
 
Theorempm2mpf1o 22316 The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐‘‡:๐ตโ€“1-1-ontoโ†’๐ฟ)
 
Theorempm2mpghm 22317 The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐‘‡ โˆˆ (๐ถ GrpHom ๐‘„))
 
Theorempm2mpgrpiso 22318 The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐‘‡ โˆˆ (๐ถ GrpIso ๐‘„))
 
Theorempm2mpmhmlem1 22319* Lemma 1 for pm2mpmhm 22321. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ฟ = (Baseโ€˜๐‘„)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โˆง (๐‘ฅ โˆˆ ๐ต โˆง ๐‘ฆ โˆˆ ๐ต)) โ†’ (๐‘™ โˆˆ โ„•0 โ†ฆ ((๐ด ฮฃg (๐‘˜ โˆˆ (0...๐‘™) โ†ฆ ((๐‘ฅ decompPMat ๐‘˜)(.rโ€˜๐ด)(๐‘ฆ decompPMat (๐‘™ โˆ’ ๐‘˜))))) โˆ— (๐‘™ โ†‘ ๐‘‹))) finSupp (0gโ€˜๐‘„))
 
Theorempm2mpmhmlem2 22320* Lemma 2 for pm2mpmhm 22321. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    &   ๐ต = (Baseโ€˜๐ถ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ โˆ€๐‘ฅ โˆˆ ๐ต โˆ€๐‘ฆ โˆˆ ๐ต (๐‘‡โ€˜(๐‘ฅ(.rโ€˜๐ถ)๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ)(.rโ€˜๐‘„)(๐‘‡โ€˜๐‘ฆ)))
 
Theorempm2mpmhm 22321 The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐‘‡ โˆˆ ((mulGrpโ€˜๐ถ) MndHom (mulGrpโ€˜๐‘„)))
 
Theorempm2mprhm 22322 The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐‘‡ โˆˆ (๐ถ RingHom ๐‘„))
 
Theorempm2mprngiso 22323 The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‡ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐‘‡ โˆˆ (๐ถ RingIso ๐‘„))
 
Theorempmmpric 22324 The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘„ = (Poly1โ€˜๐ด)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ ๐ถ โ‰ƒ๐‘Ÿ ๐‘„)
 
Theoremmonmat2matmon 22325 The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐พ = (Baseโ€˜๐ด)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ผ = (๐‘ pMatToMatPoly ๐‘…)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐ถ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โˆง (๐‘€ โˆˆ ๐พ โˆง ๐ฟ โˆˆ โ„•0)) โ†’ (๐ผโ€˜((๐ฟ๐ธ๐‘Œ) ยท (๐‘‡โ€˜๐‘€))) = (๐‘€ โˆ— (๐ฟ โ†‘ ๐‘‹)))
 
Theorempm2mp 22326* The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ถ = (๐‘ Mat ๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ถ)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘‹ = (var1โ€˜๐ด)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐พ = (Baseโ€˜๐ด)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐ผ = (๐‘ pMatToMatPoly ๐‘…)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘Œ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐ถ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โˆง (๐‘€ โˆˆ (๐พ โ†‘m โ„•0) โˆง ๐‘€ finSupp (0gโ€˜๐ด))) โ†’ (๐ผโ€˜(๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘›๐ธ๐‘Œ) ยท (๐‘‡โ€˜(๐‘€โ€˜๐‘›)))))) = (๐‘„ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘€โ€˜๐‘›) โˆ— (๐‘› โ†‘ ๐‘‹)))))
 
11.7  The characteristic polynomial

According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix as coefficients.". Based on the definition of the characteristic polynomial of a square matrix (df-chpmat 22328) the eigenvalues and corresponding eigenvectors can be defined.

 
11.7.1  Definition and basic properties

The characteristic polynomial of a matrix ๐ด is the determinant of the characteristic matrix of ๐ด: (๐‘ก๐ผ โˆ’ ๐ด).

 
Syntaxcchpmat 22327 Extend class notation with the characteristic polynomial.
class CharPlyMat
 
Definitiondf-chpmat 22328* Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "The characteristic polynomial of [an n x n matrix] A, denoted by pA(t), is the polynomial defined by pA ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in [Lang], p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial PM(t) to be the determinant det ( t In - M ) where In is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019.)
CharPlyMat = (๐‘› โˆˆ Fin, ๐‘Ÿ โˆˆ V โ†ฆ (๐‘š โˆˆ (Baseโ€˜(๐‘› Mat ๐‘Ÿ)) โ†ฆ ((๐‘› maDet (Poly1โ€˜๐‘Ÿ))โ€˜(((var1โ€˜๐‘Ÿ)( ยท๐‘  โ€˜(๐‘› Mat (Poly1โ€˜๐‘Ÿ)))(1rโ€˜(๐‘› Mat (Poly1โ€˜๐‘Ÿ))))(-gโ€˜(๐‘› Mat (Poly1โ€˜๐‘Ÿ)))((๐‘› matToPolyMat ๐‘Ÿ)โ€˜๐‘š)))))
 
Theoremchmatcl 22329 Closure of the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) (Proof shortened by AV, 29-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐ป = ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โ†’ ๐ป โˆˆ (Baseโ€˜๐‘Œ))
 
Theoremchmatval 22330 The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐ป = ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &    โˆผ = (-gโ€˜๐‘ƒ)    &    0 = (0gโ€˜๐‘ƒ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐ผ โˆˆ ๐‘ โˆง ๐ฝ โˆˆ ๐‘)) โ†’ (๐ผ๐ป๐ฝ) = if(๐ผ = ๐ฝ, (๐‘‹ โˆผ (๐ผ(๐‘‡โ€˜๐‘€)๐ฝ)), ( 0 โˆผ (๐ผ(๐‘‡โ€˜๐‘€)๐ฝ))))
 
Theoremchpmatfval 22331* Value of the characteristic polynomial function. (Contributed by AV, 2-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐ท = (๐‘ maDet ๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    1 = (1rโ€˜๐‘Œ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ ๐‘‰) โ†’ ๐ถ = (๐‘š โˆˆ ๐ต โ†ฆ (๐ทโ€˜((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘š)))))
 
Theoremchpmatval 22332 The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐ท = (๐‘ maDet ๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    1 = (1rโ€˜๐‘Œ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ ๐‘‰ โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ถโ€˜๐‘€) = (๐ทโ€˜((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))))
 
Theoremchpmatply1 22333 The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ธ = (Baseโ€˜๐‘ƒ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ถโ€˜๐‘€) โˆˆ ๐ธ)
 
Theoremchpmatval2 22334* The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    1 = (1rโ€˜๐‘Œ)    &   ๐บ = (SymGrpโ€˜๐‘)    &   ๐ป = (Baseโ€˜๐บ)    &   ๐‘ = (โ„คRHomโ€˜๐‘ƒ)    &   ๐‘† = (pmSgnโ€˜๐‘)    &   ๐‘ˆ = (mulGrpโ€˜๐‘ƒ)    &    ร— = (.rโ€˜๐‘ƒ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ถโ€˜๐‘€) = (๐‘ƒ ฮฃg (๐‘ โˆˆ ๐ป โ†ฆ (((๐‘ โˆ˜ ๐‘†)โ€˜๐‘) ร— (๐‘ˆ ฮฃg (๐‘ฅ โˆˆ ๐‘ โ†ฆ ((๐‘โ€˜๐‘ฅ)((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))๐‘ฅ)))))))
 
Theoremchpmat0d 22335 The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.)
๐ถ = (โˆ… CharPlyMat ๐‘…)    โ‡’   (๐‘… โˆˆ Ring โ†’ (๐ถโ€˜โˆ…) = (1rโ€˜(Poly1โ€˜๐‘…)))
 
Theoremchpmat1dlem 22336 Lemma for chpmat1d 22337. (Contributed by AV, 7-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐‘† = (algScโ€˜๐‘ƒ)    &   ๐บ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    โ‡’   ((๐‘… โˆˆ Ring โˆง (๐‘ = {๐ผ} โˆง ๐ผ โˆˆ ๐‘‰) โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ผ((๐‘‹( ยท๐‘  โ€˜๐บ)(1rโ€˜๐บ))(-gโ€˜๐บ)(๐‘‡โ€˜๐‘€))๐ผ) = (๐‘‹ โˆ’ (๐‘†โ€˜(๐ผ๐‘€๐ผ))))
 
Theoremchpmat1d 22337 The characteristic polynomial of a matrix with dimension 1. (Contributed by AV, 7-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐‘† = (algScโ€˜๐‘ƒ)    โ‡’   ((๐‘… โˆˆ CRing โˆง (๐‘ = {๐ผ} โˆง ๐ผ โˆˆ ๐‘‰) โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ถโ€˜๐‘€) = (๐‘‹ โˆ’ (๐‘†โ€˜(๐ผ๐‘€๐ผ))))
 
Theoremchpdmatlem0 22338 Lemma 0 for chpdmat 22342. (Contributed by AV, 18-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘† = (algScโ€˜๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    0 = (0gโ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐‘„ = (๐‘ Mat ๐‘ƒ)    &    1 = (1rโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘„)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring) โ†’ (๐‘‹ ยท 1 ) โˆˆ (Baseโ€˜๐‘„))
 
Theoremchpdmatlem1 22339 Lemma 1 for chpdmat 22342. (Contributed by AV, 18-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘† = (algScโ€˜๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    0 = (0gโ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐‘„ = (๐‘ Mat ๐‘ƒ)    &    1 = (1rโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘„)    &   ๐‘ = (-gโ€˜๐‘„)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โ†’ ((๐‘‹ ยท 1 )๐‘(๐‘‡โ€˜๐‘€)) โˆˆ (Baseโ€˜๐‘„))
 
Theoremchpdmatlem2 22340 Lemma 2 for chpdmat 22342. (Contributed by AV, 18-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘† = (algScโ€˜๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    0 = (0gโ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐‘„ = (๐‘ Mat ๐‘ƒ)    &    1 = (1rโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘„)    &   ๐‘ = (-gโ€˜๐‘„)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    โ‡’   ((((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โˆง ๐‘– โˆˆ ๐‘) โˆง ๐‘— โˆˆ ๐‘) โˆง ๐‘– โ‰  ๐‘—) โˆง (๐‘–๐‘€๐‘—) = 0 ) โ†’ (๐‘–((๐‘‹ ยท 1 )๐‘(๐‘‡โ€˜๐‘€))๐‘—) = (0gโ€˜๐‘ƒ))
 
Theoremchpdmatlem3 22341 Lemma 3 for chpdmat 22342. (Contributed by AV, 18-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘† = (algScโ€˜๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    0 = (0gโ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐‘„ = (๐‘ Mat ๐‘ƒ)    &    1 = (1rโ€˜๐‘„)    &    ยท = ( ยท๐‘  โ€˜๐‘„)    &   ๐‘ = (-gโ€˜๐‘„)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โˆง ๐พ โˆˆ ๐‘) โ†’ (๐พ((๐‘‹ ยท 1 )๐‘(๐‘‡โ€˜๐‘€))๐พ) = (๐‘‹ โˆ’ (๐‘†โ€˜(๐พ๐‘€๐พ))))
 
Theoremchpdmat 22342* The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019.) (Proof shortened by AV, 21-Nov-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘† = (algScโ€˜๐‘ƒ)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    0 = (0gโ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง โˆ€๐‘– โˆˆ ๐‘ โˆ€๐‘— โˆˆ ๐‘ (๐‘– โ‰  ๐‘— โ†’ (๐‘–๐‘€๐‘—) = 0 )) โ†’ (๐ถโ€˜๐‘€) = (๐บ ฮฃg (๐‘˜ โˆˆ ๐‘ โ†ฆ (๐‘‹ โˆ’ (๐‘†โ€˜(๐‘˜๐‘€๐‘˜))))))
 
Theoremchpscmat 22343* The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โ†‘ = (.gโ€˜๐บ)    &   ๐ท = {๐‘š โˆˆ (Baseโ€˜๐ด) โˆฃ โˆƒ๐‘ โˆˆ (Baseโ€˜๐‘…)โˆ€๐‘– โˆˆ ๐‘ โˆ€๐‘— โˆˆ ๐‘ (๐‘–๐‘š๐‘—) = if(๐‘– = ๐‘—, ๐‘, (0gโ€˜๐‘…))}    &   ๐‘† = (algScโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โˆง (๐‘€ โˆˆ ๐ท โˆง ๐ผ โˆˆ ๐‘ โˆง โˆ€๐‘› โˆˆ ๐‘ (๐‘›๐‘€๐‘›) = ๐ธ)) โ†’ (๐ถโ€˜๐‘€) = ((โ™ฏโ€˜๐‘) โ†‘ (๐‘‹ โˆ’ (๐‘†โ€˜๐ธ))))
 
Theoremchpscmat0 22344* The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โ†‘ = (.gโ€˜๐บ)    &   ๐ท = {๐‘š โˆˆ (Baseโ€˜๐ด) โˆฃ โˆƒ๐‘ โˆˆ (Baseโ€˜๐‘…)โˆ€๐‘– โˆˆ ๐‘ โˆ€๐‘— โˆˆ ๐‘ (๐‘–๐‘š๐‘—) = if(๐‘– = ๐‘—, ๐‘, (0gโ€˜๐‘…))}    &   ๐‘† = (algScโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โˆง (๐‘€ โˆˆ ๐ท โˆง ๐ผ โˆˆ ๐‘ โˆง โˆ€๐‘› โˆˆ ๐‘ (๐‘›๐‘€๐‘›) = (๐ผ๐‘€๐ผ))) โ†’ (๐ถโ€˜๐‘€) = ((โ™ฏโ€˜๐‘) โ†‘ (๐‘‹ โˆ’ (๐‘†โ€˜(๐ผ๐‘€๐ผ)))))
 
Theoremchpscmatgsumbin 22345* The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โ†‘ = (.gโ€˜๐บ)    &   ๐ท = {๐‘š โˆˆ (Baseโ€˜๐ด) โˆฃ โˆƒ๐‘ โˆˆ (Baseโ€˜๐‘…)โˆ€๐‘– โˆˆ ๐‘ โˆ€๐‘— โˆˆ ๐‘ (๐‘–๐‘š๐‘—) = if(๐‘– = ๐‘—, ๐‘, (0gโ€˜๐‘…))}    &   ๐‘† = (algScโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐น = (.gโ€˜๐‘ƒ)    &   ๐ป = (mulGrpโ€˜๐‘…)    &   ๐ธ = (.gโ€˜๐ป)    &   ๐ผ = (invgโ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โˆง (๐‘€ โˆˆ ๐ท โˆง ๐ฝ โˆˆ ๐‘ โˆง โˆ€๐‘› โˆˆ ๐‘ (๐‘›๐‘€๐‘›) = (๐ฝ๐‘€๐ฝ))) โ†’ (๐ถโ€˜๐‘€) = (๐‘ƒ ฮฃg (๐‘™ โˆˆ (0...(โ™ฏโ€˜๐‘)) โ†ฆ (((โ™ฏโ€˜๐‘)C๐‘™)๐น((((โ™ฏโ€˜๐‘) โˆ’ ๐‘™)๐ธ(๐ผโ€˜(๐ฝ๐‘€๐ฝ))) ยท (๐‘™ โ†‘ ๐‘‹))))))
 
Theoremchpscmatgsummon 22346* The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โ†‘ = (.gโ€˜๐บ)    &   ๐ท = {๐‘š โˆˆ (Baseโ€˜๐ด) โˆฃ โˆƒ๐‘ โˆˆ (Baseโ€˜๐‘…)โˆ€๐‘– โˆˆ ๐‘ โˆ€๐‘— โˆˆ ๐‘ (๐‘–๐‘š๐‘—) = if(๐‘– = ๐‘—, ๐‘, (0gโ€˜๐‘…))}    &   ๐‘† = (algScโ€˜๐‘ƒ)    &    โˆ’ = (-gโ€˜๐‘ƒ)    &   ๐น = (.gโ€˜๐‘ƒ)    &   ๐ป = (mulGrpโ€˜๐‘…)    &   ๐ธ = (.gโ€˜๐ป)    &   ๐ผ = (invgโ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐‘ = (.gโ€˜๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โˆง (๐‘€ โˆˆ ๐ท โˆง ๐ฝ โˆˆ ๐‘ โˆง โˆ€๐‘› โˆˆ ๐‘ (๐‘›๐‘€๐‘›) = (๐ฝ๐‘€๐ฝ))) โ†’ (๐ถโ€˜๐‘€) = (๐‘ƒ ฮฃg (๐‘™ โˆˆ (0...(โ™ฏโ€˜๐‘)) โ†ฆ ((((โ™ฏโ€˜๐‘)C๐‘™)๐‘(((โ™ฏโ€˜๐‘) โˆ’ ๐‘™)๐ธ(๐ผโ€˜(๐ฝ๐‘€๐ฝ)))) ยท (๐‘™ โ†‘ ๐‘‹)))))
 
Theoremchp0mat 22347 The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โ†‘ = (.gโ€˜๐บ)    &    0 = (0gโ€˜๐ด)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โ†’ (๐ถโ€˜ 0 ) = ((โ™ฏโ€˜๐‘) โ†‘ ๐‘‹))
 
Theoremchpidmat 22348 The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.)
๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐บ = (mulGrpโ€˜๐‘ƒ)    &    โ†‘ = (.gโ€˜๐บ)    &   ๐ผ = (1rโ€˜๐ด)    &   ๐‘† = (algScโ€˜๐‘ƒ)    &    1 = (1rโ€˜๐‘…)    &    โˆ’ = (-gโ€˜๐‘ƒ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing) โ†’ (๐ถโ€˜๐ผ) = ((โ™ฏโ€˜๐‘) โ†‘ (๐‘‹ โˆ’ (๐‘†โ€˜ 1 ))))
 
Theoremchmaidscmat 22349 The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 5-Jul-2022.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐ธ = (Baseโ€˜๐‘ƒ)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐พ = (Baseโ€˜๐‘Œ)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘† = (๐‘ ScMat ๐‘ƒ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ ((๐ถโ€˜๐‘€) ยท 1 ) โˆˆ ๐‘†)
 
11.7.2  The characteristic factor function G

In this subsection the function ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›)))))))) is discussed. This function is involved in the representation of the product of the characteristic matrix of a given matrix and its adjunct as an infinite sum, see cpmadugsum 22379. Therefore, this function is called "characteristic factor function" (in short "chfacf") in the following. It plays an important role in the proof of the Cayley-Hamilton theorem, see cayhamlem1 22367, cayhamlem3 22388 and cayhamlem4 22389.

 
Theoremfvmptnn04if 22350* The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.)
๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ๐ด, if(๐‘› = ๐‘†, ๐ถ, if(๐‘† < ๐‘›, ๐ท, ๐ต))))    &   (๐œ‘ โ†’ ๐‘† โˆˆ โ„•)    &   (๐œ‘ โ†’ ๐‘ โˆˆ โ„•0)    &   (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐‘‰)    &   ((๐œ‘ โˆง ๐‘ = 0) โ†’ ๐‘Œ = โฆ‹๐‘ / ๐‘›โฆŒ๐ด)    &   ((๐œ‘ โˆง 0 < ๐‘ โˆง ๐‘ < ๐‘†) โ†’ ๐‘Œ = โฆ‹๐‘ / ๐‘›โฆŒ๐ต)    &   ((๐œ‘ โˆง ๐‘ = ๐‘†) โ†’ ๐‘Œ = โฆ‹๐‘ / ๐‘›โฆŒ๐ถ)    &   ((๐œ‘ โˆง ๐‘† < ๐‘) โ†’ ๐‘Œ = โฆ‹๐‘ / ๐‘›โฆŒ๐ท)    โ‡’   (๐œ‘ โ†’ (๐บโ€˜๐‘) = ๐‘Œ)
 
Theoremfvmptnn04ifa 22351* The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.)
๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ๐ด, if(๐‘› = ๐‘†, ๐ถ, if(๐‘† < ๐‘›, ๐ท, ๐ต))))    &   (๐œ‘ โ†’ ๐‘† โˆˆ โ„•)    &   (๐œ‘ โ†’ ๐‘ โˆˆ โ„•0)    โ‡’   ((๐œ‘ โˆง ๐‘ = 0 โˆง โฆ‹๐‘ / ๐‘›โฆŒ๐ด โˆˆ ๐‘‰) โ†’ (๐บโ€˜๐‘) = โฆ‹๐‘ / ๐‘›โฆŒ๐ด)
 
Theoremfvmptnn04ifb 22352* The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.)
๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ๐ด, if(๐‘› = ๐‘†, ๐ถ, if(๐‘† < ๐‘›, ๐ท, ๐ต))))    &   (๐œ‘ โ†’ ๐‘† โˆˆ โ„•)    &   (๐œ‘ โ†’ ๐‘ โˆˆ โ„•0)    โ‡’   ((๐œ‘ โˆง (0 < ๐‘ โˆง ๐‘ < ๐‘†) โˆง โฆ‹๐‘ / ๐‘›โฆŒ๐ต โˆˆ ๐‘‰) โ†’ (๐บโ€˜๐‘) = โฆ‹๐‘ / ๐‘›โฆŒ๐ต)
 
Theoremfvmptnn04ifc 22353* The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.)
๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ๐ด, if(๐‘› = ๐‘†, ๐ถ, if(๐‘† < ๐‘›, ๐ท, ๐ต))))    &   (๐œ‘ โ†’ ๐‘† โˆˆ โ„•)    &   (๐œ‘ โ†’ ๐‘ โˆˆ โ„•0)    โ‡’   ((๐œ‘ โˆง ๐‘ = ๐‘† โˆง โฆ‹๐‘ / ๐‘›โฆŒ๐ถ โˆˆ ๐‘‰) โ†’ (๐บโ€˜๐‘) = โฆ‹๐‘ / ๐‘›โฆŒ๐ถ)
 
Theoremfvmptnn04ifd 22354* The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.)
๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ๐ด, if(๐‘› = ๐‘†, ๐ถ, if(๐‘† < ๐‘›, ๐ท, ๐ต))))    &   (๐œ‘ โ†’ ๐‘† โˆˆ โ„•)    &   (๐œ‘ โ†’ ๐‘ โˆˆ โ„•0)    โ‡’   ((๐œ‘ โˆง ๐‘† < ๐‘ โˆง โฆ‹๐‘ / ๐‘›โฆŒ๐ท โˆˆ ๐‘‰) โ†’ (๐บโ€˜๐‘) = โฆ‹๐‘ / ๐‘›โฆŒ๐ท)
 
Theoremchfacfisf 22355* The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ ๐บ:โ„•0โŸถ(Baseโ€˜๐‘Œ))
 
Theoremchfacfisfcpmat 22356* The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘† = (๐‘ ConstPolyMat ๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ Ring โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ ๐บ:โ„•0โŸถ๐‘†)
 
Theoremchfacffsupp 22357* The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019.) (Proof shortened by AV, 23-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ ๐บ finSupp (0gโ€˜๐‘Œ))
 
Theoremchfacfscmulcl 22358* Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘‹ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐พ โ†‘ ๐‘‹) ยท (๐บโ€˜๐พ)) โˆˆ (Baseโ€˜๐‘Œ))
 
Theoremchfacfscmul0 22359* A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘‹ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))) โˆง ๐พ โˆˆ (โ„คโ‰ฅโ€˜(๐‘  + 2))) โ†’ ((๐พ โ†‘ ๐‘‹) ยท (๐บโ€˜๐พ)) = 0 )
 
Theoremchfacfscmulfsupp 22360* A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘‹ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐บโ€˜๐‘–))) finSupp 0 )
 
Theoremchfacfscmulgsum 22361* Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘‹ = (var1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    + = (+gโ€˜๐‘Œ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐บโ€˜๐‘–)))) = ((๐‘Œ ฮฃg (๐‘– โˆˆ (1...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท ((๐‘‡โ€˜(๐‘โ€˜(๐‘– โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘–))))))) + ((((๐‘  + 1) โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘ ))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0))))))
 
Theoremchfacfpmmulcl 22362* Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))) โˆง ๐พ โˆˆ โ„•0) โ†’ ((๐พ โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐บโ€˜๐พ)) โˆˆ (Baseโ€˜๐‘Œ))
 
Theoremchfacfpmmul0 22363* The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))) โˆง ๐พ โˆˆ (โ„คโ‰ฅโ€˜(๐‘  + 2))) โ†’ ((๐พ โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐บโ€˜๐พ)) = 0 )
 
Theoremchfacfpmmulfsupp 22364* A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐บโ€˜๐‘–))) finSupp 0 )
 
Theoremchfacfpmmulgsum 22365* Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    &    + = (+gโ€˜๐‘Œ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐บโ€˜๐‘–)))) = ((๐‘Œ ฮฃg (๐‘– โˆˆ (1...๐‘ ) โ†ฆ ((๐‘– โ†‘ (๐‘‡โ€˜๐‘€)) ร— ((๐‘‡โ€˜(๐‘โ€˜(๐‘– โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘–))))))) + ((((๐‘  + 1) โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘ ))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0))))))
 
Theoremchfacfpmmulgsum2 22366* Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    &    + = (+gโ€˜๐‘Œ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐บโ€˜๐‘–)))) = ((๐‘Œ ฮฃg (๐‘– โˆˆ (1...๐‘ ) โ†ฆ (((๐‘– โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐‘‡โ€˜(๐‘โ€˜(๐‘– โˆ’ 1)))) โˆ’ (((๐‘– + 1) โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘–)))))) + ((((๐‘  + 1) โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘ ))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0))))))
 
Theoremcayhamlem1 22367* Lemma 1 for cayleyhamilton 22391. (Contributed by AV, 11-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ (๐‘‡โ€˜๐‘€)) ร— (๐บโ€˜๐‘–)))) = 0 )
 
11.7.3  The Cayley-Hamilton theorem

In this section, a direct algebraic proof for the Cayley-Hamilton theorem is provided, according to Wikipedia ("Cayley-Hamilton theorem", 09-Nov-2019, https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem, section "A direct algebraic proof" (this approach is also used for proving Lemma 1.9 in [Hefferon] p. 427):

"This proof uses just the kind of objects needed to formulate the Cayley-Hamilton theorem: matrices with polynomials as entries. The matrix (t * In - A) whose determinant is the characteristic polynomial of A is such a matrix, and since polynomials [over a commutative ring] form a commutative ring, it has an adjugate

(1) B = adj(t * In - A) .

Then, according to the right-hand fundamental relation of the adjugate, one has

(2) ( t * In - A ) x B = det(t * In - A) x In = p(t) * In .

Since B is also a matrix with polynomials in t as entries, one can, for each i, collect the coefficients of t^i in each entry to form a matrix Bi of numbers, such that one has

(3) B = sumi = 0 to (n-1) t^i Bi .

(The way the entries of B are defined makes clear that no powers higher than t^(n-1) occur). While this looks like a polynomial with matrices as coefficients, we shall not consider such a notion; it is just a way to write a matrix with polynomial entries as a linear combination of n constant matrices, and the coefficient t^i has been written to the left of the matrix to stress this point of view.

Now, one can expand the matrix product in our equation by bilinearity

(4) p(t) * In = ( t * In - A ) x B
= ( t * In - A ) x sumi = 0 to (n-1) t^i * Bi
= sumi = 0 to (n-1) t * In x t^i Bi - sumi = 0 to (n-1) A * t^i Bi
= sumi = 0 to (n-1) t^(i+1) * Bi - sumi = 0 to (n-1) t^i * A x Bi
= t^n Bn-1 + sumi = 1 to (n-1) t^i * ( Bi-1 - A x Bi ) - A x B0 .

Writing

(5) p(t) In = t^n * In + t^(n-1) * c(n-1) x In + ... + t * c1 In + c0 In ,

one obtains an equality of two matrices with polynomial entries, written as linear combinations of constant matrices with powers of t as coefficients. Such an equality can hold only if in any matrix position the entry that is multiplied by a given power t^i is the same on both sides; it follows that the constant matrices with coefficient t^i in both expressions must be equal. Writing these equations then for i from n down to 0, one finds

(6) Bn-1 = In , Bi-1 - A x Bi = ci * In for 1 <= i <= n-1 , - A x B0 = c0 * In .

Finally, multiply the equation of the coefficients of t^i from the left by A^i, and sum up:

(7) A^n Bn-1 + sumi = 1 to (n-1) ( A^i x Bi-1 - A^(i+1) x Bi ) - A x B0 = A^n + cn-1 * A^(n-1) + ... + c1 * A + c0 * In .

The left-hand sides form a telescoping sum and cancel completely; the right-hand sides add up to p(A):

(8) 0 = p(A) .

This completes the proof."

To formalize this approach, the steps mentioned in Wikipedia must be elaborated in more detail.

The first step is to formalize the preliminaries and the objective of the theorem. In Wikipedia, the Cayley-Hamilton theorem is stated as follows: "... the Cayley-Hamilton theorem ... states that every square matrix over a commutative ring ... satisfies its own characteristic equation." Or in more detail: "If A is a given n x n matrix and In is the n x n identity matrix, then the characteristic polynomial of A is defined as p(t) = det(t * In - A), where det is the determinant operation and t is a variable for a scalar element of the base ring. Since the entries of the matrix (t * In - A) are (linear or constant) polynomials in t, the determinant is also an n-th order monic polynomial in t. The Cayley-Hamilton theorem states that if one defines an analogous matrix equation, p(A), consisting of the replacement of the scalar eigenvalues t with the matrix A, then this polynomial in the matrix A results in the zero matrix,

p(A) = 0.

The powers of A, obtained by substitution from powers of t, are defined by repeated matrix multiplication; the constant term of p(t) gives a multiple of the power A^0, which is defined as the identity matrix. The theorem allows A^n to be expressed as a linear combination of the lower matrix powers of A. When the ring is a field, the Cayley-Hamilton theorem is equivalent to the statement that the minimal polynomial of a square matrix divides its characteristic polynomial."

Actually, the definition of the characteristic polynomial of a square matrix requires some attention. According to df-chpmat 22328, the characteristic polynomial of an ๐‘ x ๐‘ matrix ๐‘€ over a ring ๐‘… is defined as

((๐‘ CharPlyMat ๐‘…)โ€˜๐‘€) = (๐ทโ€˜((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))))

where ๐ท = (๐‘ maDet ๐‘ƒ) is the function mapping an ๐‘ x ๐‘ matrix over the polynomial ring over the ring ๐‘… to its determinant, ๐‘‹ = (var1โ€˜๐‘…) is the variable of the polynomials over ๐‘…, 1 is the ๐‘ x ๐‘ identity matrix as matrix over the polynomial ring over the ring ๐‘… (not the ๐‘ x ๐‘ identity matrix of the matrices over the ring ๐‘…!) and (๐‘‡โ€˜๐‘€) = ((๐‘ matToPolyMat ๐‘…)โ€˜๐‘€) is the matrix ๐‘€ over a ring ๐‘… transformed into a constant matrix over the polynomial ring over the ring ๐‘…. Thus ยท is the multiplication of a polynomial matrix with a "scalar", i.e. a polynomial (see chpmatval 22332).

By this definition, it is ensured that ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€)), the matrix whose determinant is the characteristic polynomial of the matrix ๐‘€, is actually a matrix over the polynomial ring over the ring ๐‘…, as stated in Wikipedia ("matrix with polynomials as entries"). This matrix is called the characteristic matrix of matrix ๐‘€ (see Wikipedia "Polynomial matrix", 16-Nov-2019, https://en.wikipedia.org/wiki/Polynomial_matrix 22332). Following the notation in Wikipedia, we denote the characteristic polynomial of the matrix ๐‘€, formally defined by ((๐‘ CharPlyMat ๐‘…)โ€˜๐‘€) as "p(M)" in the comments. The characteristric matrix ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€)) will be denoted by "c(M)", so that "p(M) = det( c(M) )".

After the preliminaries are clarified, the objective of the Cayley-Hamilton theorem must be considered. As described in Wikipedia, the matrix ๐‘€ must be "inserted" into its characteristic polynomial in an appropriate way. Since every polynomial can be represented as infinite, but finitely supported sum of monomials scaled by the corresponding coefficients (see ply1coe 21819), also the characteristic polynomial can be written in this way:

p(M) = sumi ( pi * M^i )

Here, * is the scalar multiplication in the algebra of the polynomials over the ring ๐‘…, and the coefficients are elements of the ring ๐‘….

By this, we can "define" the insertion of the matrix M into its characteristic polynomial by "p(M) = sum( pi * M^i)", see also cayleyhamilton1 22393. Here, * is the scalar multiplication in the algebra of the matrices over the ring ๐‘….

To prove the Cayley-Hamilton theorem, we have to show that "p(M) = 0", where 0 is the zero matrix.

In this section, the following class variables and informal identifiers (acronyms in the form "A(B)" or "AB") are used:

class variable/ informal identifier definiens explanation
๐‘ An arbitrary finite set, used as dimension for matrices
๐‘… An arbitrary (commutative) ring: ๐‘… โˆˆ CRing
B(R) (Baseโ€˜๐‘…) Base set of (the ring) ๐‘…
๐ด (๐‘ Mat ๐‘…) Algebra of ๐‘ x ๐‘ matrices over (the ring) ๐‘…
๐ต (Baseโ€˜๐ด) Base set of the algebra of ๐‘ x ๐‘ matrices, i .e. the set of all ๐‘ x ๐‘ matrices
๐‘€ An arbitrary ๐‘ x ๐‘ matrix
๐‘ƒ (Poly1โ€˜๐‘…) The algebra of polynomials over (the ring) ๐‘…
B(P) (Baseโ€˜๐‘ƒ) Base set of the algebra of polynomials, i .e. the set of all polynomials
๐‘‹, XR (var1โ€˜๐‘…) The variable of polynomials over (the ring) ๐‘…
๐‘Œ, XA (var1โ€˜๐ด) The variable of polynomials over matrices of the algebra ๐ด
โ†‘ (.gโ€˜(mulGrpโ€˜๐‘ƒ)) The group exponentiation for polynomials over (the ring) ๐‘…
^ Arbitrary group exponentiation
๐‘ˆ (algScโ€˜๐‘ƒ) The injection of scalars, i.e. elements of (the ring) ๐‘… into the base set of the algebra of polynomials over ๐‘…
(๐‘ˆโ€˜๐‘), S(p) ((algScโ€˜๐‘ƒ)โ€˜๐‘) The element ๐‘ of (the ring) ๐‘… represented as polynomial over ๐‘…
๐‘Œ (๐‘ Mat ๐‘ƒ) Algebra of ๐‘ x ๐‘ matrices over (the polynomial ring) ๐‘ƒ over the ring ๐‘…
B(Y) (Baseโ€˜๐‘Œ) Base set of the algebra of polynomial ๐‘ x ๐‘ matrices, i .e. the set of all polynomial ๐‘ x ๐‘ matrices
๐‘„ (Poly1โ€˜๐ด) Algebra of polynomials over the ring of ๐‘ x ๐‘ matrices over the ring ๐‘…
B(Q) (Baseโ€˜๐‘„) Base set of the algebra of polynomials over the ring of ๐‘ x ๐‘ matrices over the ring ๐‘…, i .e. the set of all polynomials having ๐‘ x ๐‘ matrices as coefficients
+, + (+gโ€˜๐‘Œ) The addition of polynomial matrices
โˆ’, - (-gโ€˜๐‘Œ) The subtraction of polynomial matrices
ยท, *Y ( ยท๐‘  โ€˜๐‘Œ) The multiplication of a polynomial matrix with a scalar ( i. e. a polynomial)
*A ( ยท๐‘  โ€˜๐ด) The multiplication of a matrix with a scalar ( i. e. an element of the underlying ring)
*Q ( ยท๐‘  โ€˜๐‘„) The multiplication of a polynomial over matrices with a scalar ( i. e. a matrix)
ร—, xY (.rโ€˜๐‘Œ) The multiplication of polynomial matrices
xA (.rโ€˜๐ด) The multiplication of matrices
xQ (.rโ€˜๐‘„) The multiplication of polynomials over matrices
1, 1Y (1rโ€˜๐‘Œ) The identity matrix in the algebra of polynomial matrices over ๐‘…
1A (1rโ€˜๐ด) The identity matrix in the algebra of matrices over ๐‘…
0, 0Y (0gโ€˜๐‘Œ) The zero matrix in the algebra of matrices consisting of polynomials
๐‘‡ (๐‘ matToPolyMat ๐‘…) The transformation of an ๐‘ x ๐‘ matrix over ๐‘… into a polynomial ๐‘ x ๐‘ matrix over ๐‘…
T1(M) (๐‘‡โ€˜๐‘€) The matrix M transformed into a polynomial ๐‘ x ๐‘ matrix over ๐‘…
U(M) (๐‘ˆโ€˜๐‘€) The (constant) polynomial ๐‘ x ๐‘ matrix M transformed into a matrix over the ring ๐‘…. Inverse function of ๐‘‡: (๐‘‡โ€˜(๐‘ˆโ€˜๐‘€)) = ๐‘€ (see m2cpminvid2 22256 )
T2(M) ((๐‘ pMatToMatPoly ๐‘…)โ€˜๐‘€) The polynomial ๐‘ x ๐‘ matrix M transformed into a polynomial over the ๐‘ x ๐‘ matrices over ๐‘…
๐ผ, c(M) ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€)) The characteristic matrix of a matrix ๐‘€, i.e. the matrix whose determinant is the characteristic polynomial of the matrix ๐‘€
๐ถ (๐‘ CharPlyMat ๐‘…) The function mapping a matrix over (a ring) ๐‘… to its characteristic polynomial
๐พ, p(M) (๐ถโ€˜๐‘€) The characteristic polynomial of a matrix over (a ring) ๐‘…
๐ป (๐พ ยท 1 ) The scalar matrix (diagonal matrix) with the characteristic polynomial of a matrix as diagional elements
๐ฝ (๐‘ maAdju ๐‘ƒ) The function mapping a matrix consisting of polynomials to its adjugate ("matrix of cofactors")
๐‘Š, adj(cm(M)) (๐ฝโ€˜๐ผ) The adjugate of the characteristic matrix of the matrix ๐‘€


Using this notation, we have:
  1. "c(M) e. B(Y)", or ๐ผ โˆˆ (Baseโ€˜๐‘Œ), see chmatcl 22329
  2. "p(M) e. B(P)", or ๐พ โˆˆ (Baseโ€˜๐‘ƒ), see chpmatply1 22333
  3. "T(M) e. B(Y)", or (๐‘‡โ€˜๐‘€) โˆˆ (Baseโ€˜๐‘Œ), see mat2pmatbas 22227
  4. ๐ฝ:(Baseโ€˜๐‘Œ)โŸถ(Baseโ€˜๐‘Œ), see maduf 22142
  5. "adj(cm(M)) e. B(Y)", or ๐‘Š โˆˆ (Baseโ€˜๐‘Œ)


Following the proof shown in Wikipedia, the following steps are performed:
  1. Write ๐‘Š, the adjugate of the characteristic matrix, as a finite sum of scaled monomials, see pmatcollpw3fi1 22289:
    adj(cm(M)) = sumi=0 to s ( XR ^i *Y T1(b(i)) )
    where b(i) are matrices over the ring ๐‘…, so T1(b(i)) are constant polynomial matrices.
    This step corresponds to (3) in Wikipedia. In contrast to Wikipedia, we write ๐‘Š as finite sum of not exactly determined number of summands, which may be greater than needed (including summands of value 0). This will be sufficient to provide a representation of (๐ผ ร— ๐‘Š) as infinite, but finitely supported sum, see step 3.
  2. Write (๐ผ ร— ๐‘Š), the product of the characteristic matrix and its adjugate as finite sum of scaled monomials, see cpmadugsumfi 22378. This representation is obtained by replacing ๐‘Š by the representation resulting from step 1. and performing calculation rules available for the associative algebra of matrices over polynomials over a commutative ring:
    cm(M) *Y adj(cm(M)) = sumi=0 to s ( XR ^i *Y ( T1(b(i-1)) - T1(M) xY T1(b(i)) ) ) + XR ^(s+1) *Y ( T1(b(s)) - T1(M) xY T1(b(0))
    where b(i) are matrices over ๐‘…, so T1(b(i)) are constant polynomial matrices:
    cm(M) *Y adj(cm(M))
    = cm(M) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) [see pmatcollpw3fi1 22289 (step 1.)]
    = ( ( XA *Y 1Y ) - T1(M) ) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) [def. of cm(M)]
    = ( XA *Y 1Y ) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) - T1(M) *Y sumi=0 to s ( XR ^i *Y T1(b(i)) ) [see ringsubdir 20119]
    = sumi=0 to s ( XR ^i *Y ( T1(b(i-1)) - T1(M) xY T1(b(i)) ) ) + XR ^(s+1) *Y ( T1(b(s)) - T1(M) xY T1(b(0)) [see cpmadugsumlemF 22377]
    This step corresponds partially to (4) in Wikipedia.
  3. Write (๐ผ ร— ๐‘Š) as infinite, but finitely supported sum of scaled monomials, see cpmadugsum 22379:
    cm(M) * adj(cm(M)) = sumi ( XR ^i *Y G(i) )
    This representation is obtained by defining a function G for the coefficients, which we call "characteristic factor function", see chfacfisf 22355, which covers the special terms and the padding with 0. G(i) is a constant polynomial matrix (see chfacfisfcpmat 22356). This step corresponds partially to (4) in Wikipedia, with summands of value 0 added.
  4. Write ๐ป = (๐พ ยท 1 ), the scalar matrix (diagonal matrix) with the characteristic polynomial of a matrix as diagional elements, as infinite, but finitely supported sum of scaled monomials. See cpmidgsum 22369:
    p(m) *Y IY = sumi ( XR ^i *Y ( S(pi) *Y IY ) )
    The proof of cpmidgsum 22369 is making use of pmatcollpwscmat 22292, because ๐ป = (๐พ ยท 1 ) is a scalar/diagonal polynomial matrix with the characteristic polynomial "p(M)" as diagonal entries (since pi is an element of the ring ๐‘…, S(pi) is a (constant) polynomial). This corresponds to (5) in Wikipedia, with summands of value 0 added.
  5. Transform the sum representation of (๐ผ ร— ๐‘Š) from step 3. into polynomials over matrices:
    T2(cm(M) * adj(cm(M))) = sumi ( U(G(i)) *Q XA ^i ) [see cpmadumatpoly 22384]
    where U(G(i)) is a matrix over the ring ๐‘….
  6. Transform the sum representation of ๐ป from step 4. into polynomials over matrices:
    T2(p(m) *Y IY) = sumi ( pi *A IA ) *Q XA ^i ) [see cpmidpmat 22374]
  7. Equate the sum representations resulting from steps 5. and 6. by using cpmadurid 22368 to obtain the equation
    sumi ( U(G(i)) *Q XA ^i ) = sumi ( pi *A IA ) *Q XA ^i ):
    sumi ( U(G(i)) *Q XA ^i )
    = T2(cm(M) * adj(cm(M))) [see step 5.]
    = T2(p(m) *Y IY) [see cpmadurid 22368]
    = sumi ( pi *A IA ) *Q XA ^i ) [see step 6.]
    Note that this step is contained in the proof of chcoeffeq 22387, see step 9. This step corresponds to the conclusion from (4) and (5) in Wikipedia, with summands of value 0 added.
  8. Compare the sum representations of step 7. to obtain the equations U(G(i)) = pi *A IA , see chcoeffeqlem 22386. This corresponds to (6) in Wikipedia. Since the coefficients of the transformed representations and the original representations are identical, the equations of the coefficients are also valid for the original representations of steps 3. and 4.
  9. Multiply the equations of the coefficients from step 8. from the left by M^i, and sum up, see chcoeffeq 22387:
    sumi ( M^i xA U(G(i)) ) = sumi ( M^i xA ( pi *A IA) )
    This corresponds to (7) in Wikipedia.
  10. Transform the right hand side of the equation in step 9. into an appropriate form, see cayhamlem3 22388:
    sumi ( pi *A M^i )
    = sumi ( M^i xA ( pi *A IA) ) [see cayhamlem2 22385]
    = sumi ( M^i xA U(G(i)) ) [see chcoeffeq 22387]
  11. Apply the theorem for telescoping sums, see telgsumfz 19857, to the sum sumi ( T1(M)^i xY G(i) ), which results in an equation to 0:
    sumi ( T1(M)^i xY G(i) ) = 0Y, see cayhamlem1 22367:
    sumi ( T1(M)^i xY G(i) )
    = sumi=1 to s ( T1(M)^i xY T1(b(i-1)) - T1(M)^(i+1) xY T1(b(i)) )
    + ( T1(M)^(s+1) xY T1(b(s)) - T1(M) xY T1(b(0)) ) [see chfacfpmmulgsum2 22366]
    = ( T1(M) xY T1(b(0)) - T1(M)^(s+1) xY T1(b(s)) ) + ( T1 M)^(s+1) xY T1(b(s)) - T1(M) xY T1(b(0)) ) [see telgsumfz 19857]
    = 0Y [see grpnpncan0 18918] This step corresponds partially to (8) in Wikipedia.
  12. Since ๐‘‡ is a ring homomorphism (see mat2pmatrhm 22235), the left hand side of the equation in step 10. can be transformed into a representation appropriate to apply the result of step 11., see cayhamlem4 22389:
    sumi ( pi *A M^i )
    = sumi ( M^i xA U(G(i)) ) [see cayhamlem3 22388 (step 10.)]
    = U(T1(sumi ( M^i xA U(G(i)) ))) [see m2cpminvid 22254]
    = U(sumi T1( M^i xA U(G(i)) )) [see gsummptmhm 19807]
    = U(sumi ( T1(M^i) xY T1(U(G(i))) )) [see rhmmul 20263]
    = U(sumi ( T1(M)^i xY T1(U(G(i))) )) [see mhmmulg 18994]
    = U(sumi ( T1(M)^i xY G(i) )) [see m2cpminvid2 22256 ]
  13. Finally, combine the results of steps 11. and 12., and use the fact that ๐‘‡ (and therefore also its inverse ๐‘ˆ) is an injective ring homomorphism (see mat2pmatf1 22230 and mat2pmatrhm 22235) to transform the equality resulting from steps 11. and 12. into the desired equation sumi ( pi *A M^i ) = 0A , see cayleyhamilton 22391 resp. cayleyhamilton0 22390:
    sumi ( pi *A M^i )
    = U(sumi ( T1(M)^i xY G(i) )) [see cayhamlem4 22389 (step 12.)]
    = U(0Y ) [see cayhamlem1 22367 (step 11.)]
    = 0A [see m2cpminv0 22262]
The transformations in steps 5., 6., 10., 12. and 13. are not mentioned in the proof provided in Wikipedia, since it makes no distinction between a matrix over a ring ๐‘… and its representation as matrix over the polynomial ring over the ring ๐‘… in general!
 
Theoremcpmadurid 22368 The right-hand fundamental relation of the adjugate (see madurid 22145) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐ผ = ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ผ ร— (๐ฝโ€˜๐ผ)) = ((๐ถโ€˜๐‘€) ยท 1 ))
 
Theoremcpmidgsum 22369* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ˆ = (algScโ€˜๐‘ƒ)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐ป = (๐พ ยท 1 )    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ ๐ป = (๐‘Œ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) ยท ((๐‘ˆโ€˜((coe1โ€˜๐พ)โ€˜๐‘›)) ยท 1 )))))
 
Theoremcpmidgsumm2pm 22370* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ˆ = (algScโ€˜๐‘ƒ)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐ป = (๐พ ยท 1 )    &   ๐‘‚ = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ ๐ป = (๐‘Œ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(((coe1โ€˜๐พ)โ€˜๐‘›) โˆ— ๐‘‚))))))
 
Theoremcpmidpmatlem1 22371* Lemma 1 for cpmidpmat 22374. (Contributed by AV, 13-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ˆ = (algScโ€˜๐‘ƒ)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐ป = (๐พ ยท 1 )    &   ๐‘‚ = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘˜ โˆˆ โ„•0 โ†ฆ (((coe1โ€˜๐พ)โ€˜๐‘˜) โˆ— ๐‘‚))    โ‡’   (๐ฟ โˆˆ โ„•0 โ†’ (๐บโ€˜๐ฟ) = (((coe1โ€˜๐พ)โ€˜๐ฟ) โˆ— ๐‘‚))
 
Theoremcpmidpmatlem2 22372* Lemma 2 for cpmidpmat 22374. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ˆ = (algScโ€˜๐‘ƒ)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐ป = (๐พ ยท 1 )    &   ๐‘‚ = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘˜ โˆˆ โ„•0 โ†ฆ (((coe1โ€˜๐พ)โ€˜๐‘˜) โˆ— ๐‘‚))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ ๐บ โˆˆ (๐ต โ†‘m โ„•0))
 
Theoremcpmidpmatlem3 22373* Lemma 3 for cpmidpmat 22374. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ˆ = (algScโ€˜๐‘ƒ)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐ป = (๐พ ยท 1 )    &   ๐‘‚ = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘˜ โˆˆ โ„•0 โ†ฆ (((coe1โ€˜๐พ)โ€˜๐‘˜) โˆ— ๐‘‚))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ ๐บ finSupp (0gโ€˜๐ด))
 
Theoremcpmidpmat 22374* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019.) (Revised by AV, 7-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ˆ = (algScโ€˜๐‘ƒ)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐ป = (๐พ ยท 1 )    &   ๐‘‚ = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘ = (var1โ€˜๐ด)    &    โˆ™ = ( ยท๐‘  โ€˜๐‘„)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐ผ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ผโ€˜๐ป) = (๐‘„ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((((coe1โ€˜๐พ)โ€˜๐‘›) โˆ— ๐‘‚) โˆ™ (๐‘›๐ธ๐‘)))))
 
TheoremcpmadugsumlemB 22375* Lemma B for cpmadugsum 22379. (Contributed by AV, 2-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    ร— = (.rโ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„•0 โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ ((๐‘‹ ยท 1 ) ร— (๐‘Œ ฮฃg (๐‘– โˆˆ (0...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘–)))))) = (๐‘Œ ฮฃg (๐‘– โˆˆ (0...๐‘ ) โ†ฆ (((๐‘– + 1) โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘–))))))
 
TheoremcpmadugsumlemC 22376* Lemma C for cpmadugsum 22379. (Contributed by AV, 2-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    ร— = (.rโ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„•0 โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ ((๐‘‡โ€˜๐‘€) ร— (๐‘Œ ฮฃg (๐‘– โˆˆ (0...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘–)))))) = (๐‘Œ ฮฃg (๐‘– โˆˆ (0...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘–)))))))
 
TheoremcpmadugsumlemF 22377* Lemma F for cpmadugsum 22379. (Contributed by AV, 7-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    ร— = (.rโ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &    + = (+gโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (((๐‘‹ ยท 1 ) ร— (๐‘Œ ฮฃg (๐‘– โˆˆ (0...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘–)))))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘Œ ฮฃg (๐‘– โˆˆ (0...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘–))))))) = ((๐‘Œ ฮฃg (๐‘– โˆˆ (1...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท ((๐‘‡โ€˜(๐‘โ€˜(๐‘– โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘–))))))) + ((((๐‘  + 1) โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘ ))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0))))))
 
Theoremcpmadugsumfi 22378* The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019.) (Proof shortened by AV, 29-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    ร— = (.rโ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &    + = (+gโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐ผ = ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))(๐ผ ร— (๐ฝโ€˜๐ผ)) = ((๐‘Œ ฮฃg (๐‘– โˆˆ (1...๐‘ ) โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท ((๐‘‡โ€˜(๐‘โ€˜(๐‘– โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘–))))))) + ((((๐‘  + 1) โ†‘ ๐‘‹) ยท (๐‘‡โ€˜(๐‘โ€˜๐‘ ))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0))))))
 
Theoremcpmadugsum 22379* The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    ร— = (.rโ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &    + = (+gโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐ผ = ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))(๐ผ ร— (๐ฝโ€˜๐ผ)) = (๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐บโ€˜๐‘–)))))
 
Theoremcpmidgsum2 22380* Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    ร— = (.rโ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &    + = (+gโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐ผ = ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐ป = (๐พ ยท 1 )    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))๐ป = (๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐บโ€˜๐‘–)))))
 
Theoremcpmidg2sum 22381* Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    ร— = (.rโ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &    + = (+gโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐ผ = ((๐‘‹ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐‘ˆ = (algScโ€˜๐‘ƒ)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))(๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท ((๐‘ˆโ€˜((coe1โ€˜๐พ)โ€˜๐‘–)) ยท 1 )))) = (๐‘Œ ฮฃg (๐‘– โˆˆ โ„•0 โ†ฆ ((๐‘– โ†‘ ๐‘‹) ยท (๐บโ€˜๐‘–)))))
 
Theoremcpmadumatpolylem1 22382* Lemma 1 for cpmadumatpoly 22384. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘† = (๐‘ ConstPolyMat ๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ = (var1โ€˜๐‘…)    &   ๐ท = ((๐‘ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    โ‡’   ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง ๐‘  โˆˆ โ„•) โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))) โ†’ (๐‘ˆ โˆ˜ ๐บ) โˆˆ (๐ต โ†‘m โ„•0))
 
Theoremcpmadumatpolylem2 22383* Lemma 2 for cpmadumatpoly 22384. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘† = (๐‘ ConstPolyMat ๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ = (var1โ€˜๐‘…)    &   ๐ท = ((๐‘ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    โ‡’   ((((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง ๐‘  โˆˆ โ„•) โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))) โ†’ (๐‘ˆ โˆ˜ ๐บ) finSupp (0gโ€˜๐ด))
 
Theoremcpmadumatpoly 22384* The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘† = (๐‘ ConstPolyMat ๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘Œ)    &    1 = (1rโ€˜๐‘Œ)    &   ๐‘ = (var1โ€˜๐‘…)    &   ๐ท = ((๐‘ ยท 1 ) โˆ’ (๐‘‡โ€˜๐‘€))    &   ๐ฝ = (๐‘ maAdju ๐‘ƒ)    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &   ๐‘„ = (Poly1โ€˜๐ด)    &   ๐‘‹ = (var1โ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐‘„)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘„))    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    &   ๐ผ = (๐‘ pMatToMatPoly ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))(๐ผโ€˜(๐ท ร— (๐ฝโ€˜๐ท))) = (๐‘„ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘ˆโ€˜(๐บโ€˜๐‘›)) โˆ— (๐‘› โ†‘ ๐‘‹)))))
 
Theoremcayhamlem2 22385 Lemma for cayhamlem3 22388. (Contributed by AV, 24-Nov-2019.)
๐พ = (Baseโ€˜๐‘…)    &   ๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &    1 = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐ด))    &    ยท = (.rโ€˜๐ด)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐ป โˆˆ (๐พ โ†‘m โ„•0) โˆง ๐ฟ โˆˆ โ„•0)) โ†’ ((๐ปโ€˜๐ฟ) โˆ— (๐ฟ โ†‘ ๐‘€)) = ((๐ฟ โ†‘ ๐‘€) ยท ((๐ปโ€˜๐ฟ) โˆ— 1 )))
 
Theoremchcoeffeqlem 22386* Lemma for chcoeffeq 22387. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &    1 = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐‘  โˆˆ โ„• โˆง ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ )))) โ†’ (((Poly1โ€˜๐ด) ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘ˆโ€˜(๐บโ€˜๐‘›))( ยท๐‘  โ€˜(Poly1โ€˜๐ด))(๐‘›(.gโ€˜(mulGrpโ€˜(Poly1โ€˜๐ด)))(var1โ€˜๐ด))))) = ((Poly1โ€˜๐ด) ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((((coe1โ€˜๐พ)โ€˜๐‘›) โˆ— 1 )( ยท๐‘  โ€˜(Poly1โ€˜๐ด))(๐‘›(.gโ€˜(mulGrpโ€˜(Poly1โ€˜๐ด)))(var1โ€˜๐ด))))) โ†’ โˆ€๐‘› โˆˆ โ„•0 (๐‘ˆโ€˜(๐บโ€˜๐‘›)) = (((coe1โ€˜๐พ)โ€˜๐‘›) โˆ— 1 )))
 
Theoremchcoeffeq 22387* The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &    1 = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))โˆ€๐‘› โˆˆ โ„•0 (๐‘ˆโ€˜(๐บโ€˜๐‘›)) = (((coe1โ€˜๐พ)โ€˜๐‘›) โˆ— 1 ))
 
Theoremcayhamlem3 22388* Lemma for cayhamlem4 22389. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &    1 = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐ด))    &    ยท = (.rโ€˜๐ด)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))(๐ด ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ (((coe1โ€˜๐พ)โ€˜๐‘›) โˆ— (๐‘› โ†‘ ๐‘€)))) = (๐ด ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘€) ยท (๐‘ˆโ€˜(๐บโ€˜๐‘›))))))
 
Theoremcayhamlem4 22389* Lemma for cayleyhamilton 22391. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &    0 = (0gโ€˜๐‘Œ)    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (๐ถโ€˜๐‘€)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, ( 0 โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, 0 , ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &    1 = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐ด))    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘  โˆˆ โ„• โˆƒ๐‘ โˆˆ (๐ต โ†‘m (0...๐‘ ))(๐ด ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ (((coe1โ€˜๐พ)โ€˜๐‘›) โˆ— (๐‘› โ†‘ ๐‘€)))) = (๐‘ˆโ€˜(๐‘Œ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘›๐ธ(๐‘‡โ€˜๐‘€)) ร— (๐บโ€˜๐‘›))))))
 
Theoremcayleyhamilton0 22390* The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22391 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22392)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &    0 = (0gโ€˜๐ด)    &    1 = (1rโ€˜๐ด)    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐ด))    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (coe1โ€˜(๐ถโ€˜๐‘€))    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &   ๐‘Œ = (๐‘ Mat ๐‘ƒ)    &    ร— = (.rโ€˜๐‘Œ)    &    โˆ’ = (-gโ€˜๐‘Œ)    &   ๐‘ = (0gโ€˜๐‘Œ)    &   ๐‘Š = (Baseโ€˜๐‘Œ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘Œ))    &   ๐‘‡ = (๐‘ matToPolyMat ๐‘…)    &   ๐บ = (๐‘› โˆˆ โ„•0 โ†ฆ if(๐‘› = 0, (๐‘ โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜0)))), if(๐‘› = (๐‘  + 1), (๐‘‡โ€˜(๐‘โ€˜๐‘ )), if((๐‘  + 1) < ๐‘›, ๐‘, ((๐‘‡โ€˜(๐‘โ€˜(๐‘› โˆ’ 1))) โˆ’ ((๐‘‡โ€˜๐‘€) ร— (๐‘‡โ€˜(๐‘โ€˜๐‘›))))))))    &   ๐‘ˆ = (๐‘ cPolyMatToMat ๐‘…)    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ด ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐พโ€˜๐‘›) โˆ— (๐‘› โ†‘ ๐‘€)))) = 0 )
 
Theoremcayleyhamilton 22391* The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &    0 = (0gโ€˜๐ด)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (coe1โ€˜(๐ถโ€˜๐‘€))    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐ด))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ด ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐พโ€˜๐‘›) โˆ— (๐‘› โ†‘ ๐‘€)))) = 0 )
 
TheoremcayleyhamiltonALT 22392* Alternate proof of cayleyhamilton 22391, the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 22390 directly, but has the same structure as the proof of cayleyhamilton0 22390. In contrast to the proof of cayleyhamilton0 22390, only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &    0 = (0gโ€˜๐ด)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (coe1โ€˜(๐ถโ€˜๐‘€))    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐ด))    โ‡’   ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐ด ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐พโ€˜๐‘›) โˆ— (๐‘› โ†‘ ๐‘€)))) = 0 )
 
Theoremcayleyhamilton1 22393* The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22391, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (๐นโ€˜๐‘›), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.)
๐ด = (๐‘ Mat ๐‘…)    &   ๐ต = (Baseโ€˜๐ด)    &    0 = (0gโ€˜๐ด)    &   ๐ถ = (๐‘ CharPlyMat ๐‘…)    &   ๐พ = (coe1โ€˜(๐ถโ€˜๐‘€))    &    โˆ— = ( ยท๐‘  โ€˜๐ด)    &    โ†‘ = (.gโ€˜(mulGrpโ€˜๐ด))    &   ๐ฟ = (Baseโ€˜๐‘…)    &   ๐‘‹ = (var1โ€˜๐‘…)    &   ๐‘ƒ = (Poly1โ€˜๐‘…)    &    ยท = ( ยท๐‘  โ€˜๐‘ƒ)    &   ๐ธ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))    &   ๐‘ = (0gโ€˜๐‘…)    โ‡’   (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (๐น โˆˆ (๐ฟ โ†‘m โ„•0) โˆง ๐น finSupp ๐‘)) โ†’ ((๐ถโ€˜๐‘€) = (๐‘ƒ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐นโ€˜๐‘›) ยท (๐‘›๐ธ๐‘‹)))) โ†’ (๐ด ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐นโ€˜๐‘›) โˆ— (๐‘› โ†‘ ๐‘€)))) = 0 ))
 
PART 12  BASIC TOPOLOGY
 
12.1  Topology
 
12.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union, see toponuni 22415), and it may sometimes be more convenient to consider topologies without reference to the underlying set. This is why we define successively the class of topologies (df-top 22395), then the function which associates with a set the set of topologies on it (df-topon 22412), and finally the class of topological spaces, as extensible structures having an underlying set and a topology on it (df-topsp 22434). Of course, a topology is the same thing as a topology on a set (see toprntopon 22426).

 
12.1.1.1  Topologies
 
Syntaxctop 22394 Syntax for the class of topologies.
class Top
 
Definitiondf-top 22395* Define the class of topologies. It is a proper class (see topnex 22498). See istopg 22396 and istop2g 22397 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

Top = {๐‘ฅ โˆฃ (โˆ€๐‘ฆ โˆˆ ๐’ซ ๐‘ฅโˆช ๐‘ฆ โˆˆ ๐‘ฅ โˆง โˆ€๐‘ฆ โˆˆ ๐‘ฅ โˆ€๐‘ง โˆˆ ๐‘ฅ (๐‘ฆ โˆฉ ๐‘ง) โˆˆ ๐‘ฅ)}
 
Theoremistopg 22396* Express the predicate "๐ฝ is a topology". See istop2g 22397 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use ๐‘‡ to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

(๐ฝ โˆˆ ๐ด โ†’ (๐ฝ โˆˆ Top โ†” (โˆ€๐‘ฅ(๐‘ฅ โŠ† ๐ฝ โ†’ โˆช ๐‘ฅ โˆˆ ๐ฝ) โˆง โˆ€๐‘ฅ โˆˆ ๐ฝ โˆ€๐‘ฆ โˆˆ ๐ฝ (๐‘ฅ โˆฉ ๐‘ฆ) โˆˆ ๐ฝ)))
 
Theoremistop2g 22397* Express the predicate "๐ฝ is a topology" using nonempty finite intersections instead of binary intersections as in istopg 22396. (Contributed by NM, 19-Jul-2006.)
(๐ฝ โˆˆ ๐ด โ†’ (๐ฝ โˆˆ Top โ†” (โˆ€๐‘ฅ(๐‘ฅ โŠ† ๐ฝ โ†’ โˆช ๐‘ฅ โˆˆ ๐ฝ) โˆง โˆ€๐‘ฅ((๐‘ฅ โŠ† ๐ฝ โˆง ๐‘ฅ โ‰  โˆ… โˆง ๐‘ฅ โˆˆ Fin) โ†’ โˆฉ ๐‘ฅ โˆˆ ๐ฝ))))
 
Theoremuniopn 22398 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
((๐ฝ โˆˆ Top โˆง ๐ด โŠ† ๐ฝ) โ†’ โˆช ๐ด โˆˆ ๐ฝ)
 
Theoremiunopn 22399* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
((๐ฝ โˆˆ Top โˆง โˆ€๐‘ฅ โˆˆ ๐ด ๐ต โˆˆ ๐ฝ) โ†’ โˆช ๐‘ฅ โˆˆ ๐ด ๐ต โˆˆ ๐ฝ)
 
Theoreminopn 22400 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
((๐ฝ โˆˆ Top โˆง ๐ด โˆˆ ๐ฝ โˆง ๐ต โˆˆ ๐ฝ) โ†’ (๐ด โˆฉ ๐ต) โˆˆ ๐ฝ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47842
  Copyright terms: Public domain < Previous  Next >