| Metamath
Proof Explorer Theorem List (p. 224 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30820) |
(30821-32343) |
(32344-49767) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
The main result of this subsection are the theorems showing that (𝑁 Mat 𝑅) is a ring (see matring 22306) and an associative algebra (see matassa 22307). Additionally, theorems for the identity matrix and transposed matrices are provided. | ||
| Theorem | matmulr 22301 | Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) | ||
| Theorem | mamumat1cl 22302* | The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) | ||
| Theorem | mat1comp 22303* | The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) | ||
| Theorem | mamulid 22304* | The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) ⇒ ⊢ (𝜑 → (𝐼𝐹𝑋) = 𝑋) | ||
| Theorem | mamurid 22305* | The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑁, 𝑀, 𝑀〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝐼) = 𝑋) | ||
| Theorem | matring 22306 | Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) | ||
| Theorem | matassa 22307 | Existence of the matrix algebra, see also the statement in [Lang] p. 505: "Then Matn(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
| Theorem | matmulcell 22308* | Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ × = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) | ||
| Theorem | mpomatmul 22309* | Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝑋 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐶) & ⊢ 𝑌 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐸) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐸 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑘 = 𝑖 ∧ 𝑚 = 𝑗)) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ (𝑚 = 𝑖 ∧ 𝑙 = 𝑗)) → 𝐹 = 𝐸) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑚 ∈ 𝑁) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑚 ∈ 𝑁 ↦ (𝐷 · 𝐹))))) | ||
| Theorem | mat1 22310* | Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) | ||
| Theorem | mat1ov 22311 | Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ 𝑈 = (1r‘𝐴) ⇒ ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) | ||
| Theorem | mat1bas 22312 | The identity matrix is a matrix. (Contributed by AV, 15-Feb-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ 𝐵) | ||
| Theorem | matsc 22313* | The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾) → (𝐿 · (1r‘𝐴)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 𝐿, 0 ))) | ||
| Theorem | ofco2 22314 | Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻))) | ||
| Theorem | oftpos 22315 | The transposition of the value of a function operation for two functions is the value of the function operation for the two functions transposed. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → tpos (𝐹 ∘f 𝑅𝐺) = (tpos 𝐹 ∘f 𝑅tpos 𝐺)) | ||
| Theorem | mattposcl 22316 | The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) | ||
| Theorem | mattpostpos 22317 | The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀) | ||
| Theorem | mattposvs 22318 | The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (𝑋 · tpos 𝑌)) | ||
| Theorem | mattpos1 22319 | The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos 1 = 1 ) | ||
| Theorem | tposmap 22320 | The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) | ||
| Theorem | mamutpos 22321 | Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝑃, 𝑁, 𝑀〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → tpos (𝑋𝐹𝑌) = (tpos 𝑌𝐺tpos 𝑋)) | ||
| Theorem | mattposm 22322 | Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → tpos (𝑋 · 𝑌) = (tpos 𝑌 · tpos 𝑋)) | ||
| Theorem | matgsumcl 22323* | Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) | ||
| Theorem | madetsumid 22324* | The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑈 = (mulGrp‘𝑅) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) | ||
| Theorem | matepmcl 22325* | Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) | ||
| Theorem | matepm2cl 22326* | Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) | ||
| Theorem | madetsmelbas 22327* | A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) | ||
| Theorem | madetsmelbas2 22328* | A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛))))) ∈ (Base‘𝑅)) | ||
As already mentioned before, and shown in mat0dimbas0 22329, the empty set is the sole zero-dimensional matrix (also called "empty matrix", see Wikipedia https://en.wikipedia.org/wiki/Matrix_(mathematics)#Empty_matrices). 22329 In the following, some properties of the empty matrix are shown, especially that the empty matrix over an arbitrary ring forms a commutative ring, see mat0dimcrng 22333. For the one-dimensional case, it can be shown that a ring of matrices with dimension 1 is isomorphic to the underlying ring, see mat1ric 22350. | ||
| Theorem | mat0dimbas0 22329 | The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019.) |
| ⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | ||
| Theorem | mat0dim0 22330 | The zero of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (0g‘𝐴) = ∅) | ||
| Theorem | mat0dimid 22331 | The identity of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (1r‘𝐴) = ∅) | ||
| Theorem | mat0dimscm 22332 | The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠 ‘𝐴)∅) = ∅) | ||
| Theorem | mat0dimcrng 22333 | The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.) |
| ⊢ 𝐴 = (∅ Mat 𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) | ||
| Theorem | mat1dimelbas 22334* | A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 𝑀 = {〈𝑂, 𝑟〉})) | ||
| Theorem | mat1dimbas 22335 | A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → {〈𝑂, 𝑋〉} ∈ (Base‘𝐴)) | ||
| Theorem | mat1dim0 22336 | The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (0g‘𝐴) = {〈𝑂, (0g‘𝑅)〉}) | ||
| Theorem | mat1dimid 22337 | The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {〈𝑂, (1r‘𝑅)〉}) | ||
| Theorem | mat1dimscm 22338 | The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) | ||
| Theorem | mat1dimmul 22339 | The ring multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ({〈𝑂, 𝑋〉} (.r‘𝐴){〈𝑂, 𝑌〉}) = {〈𝑂, (𝑋(.r‘𝑅)𝑌)〉}) | ||
| Theorem | mat1dimcrng 22340 | The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝑉) → 𝐴 ∈ CRing) | ||
| Theorem | mat1f1o 22341* | There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) | ||
| Theorem | mat1rhmval 22342* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) | ||
| Theorem | mat1rhmelval 22343* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐸(𝐹‘𝑋)𝐸) = 𝑋) | ||
| Theorem | mat1rhmcl 22344* | The value of the ring homomorphism 𝐹 is a matrix with dimension 1. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) ∈ 𝐵) | ||
| Theorem | mat1f 22345* | There is a function from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾⟶𝐵) | ||
| Theorem | mat1ghm 22346* | There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴)) | ||
| Theorem | mat1mhm 22347* | There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
| Theorem | mat1rhm 22348* | There is a ring homomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 RingHom 𝐴)) | ||
| Theorem | mat1rngiso 22349* | There is a ring isomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = ({𝐸} Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑂 = 〈𝐸, 𝐸〉 & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑅 RingIso 𝐴)) | ||
| Theorem | mat1ric 22350 | A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019.) |
| ⊢ 𝐴 = ({𝐸} Mat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ≃𝑟 𝐴) | ||
According to Wikipedia ("Diagonal Matrix", 8-Dec-2019, https://en.wikipedia.org/wiki/Diagonal_matrix): "In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices." The diagonal matrices are mentioned in [Lang] p. 576, but without giving them a dedicated definition. Furthermore, "A diagonal matrix with all its main diagonal entries equal is a scalar matrix, that is, a scalar multiple 𝜆 ∗ 𝐼 of the identity matrix 𝐼. Its effect on a vector is scalar multiplication by 𝜆 [see scmatscm 22376!]". The scalar multiples of the identity matrix are mentioned in [Lang] p. 504, but without giving them a special name. The main results of this subsection are the definitions of the sets of diagonal and scalar matrices (df-dmat 22353 and df-scmat 22354), basic properties of (elements of) these sets, and theorems showing that the diagonal matrices form a subring of the ring of square matrices (dmatsrng 22364), that the scalar matrices form a subring of the ring of square matrices (scmatsrng 22383), that the scalar matrices form a subring of the ring of diagonal matrices (scmatsrng1 22386) and that the ring of scalar matrices over a commutative ring is a commutative ring (scmatcrng 22384). | ||
| Syntax | cdmat 22351 | Extend class notation for the algebra of diagonal matrices. |
| class DMat | ||
| Syntax | cscmat 22352 | Extend class notation for the algebra of scalar matrices. |
| class ScMat | ||
| Definition | df-dmat 22353* | Define the set of n x n diagonal (square) matrices over a set (usually a ring) r, see definition in [Roman] p. 4 or Definition 3.12 in [Hefferon] p. 240. (Contributed by AV, 8-Dec-2019.) |
| ⊢ DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) | ||
| Definition | df-scmat 22354* | Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in [Connell] p. 57: "A scalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cIn". (Contributed by AV, 8-Dec-2019.) |
| ⊢ ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘𝑎)(1r‘𝑎))}) | ||
| Theorem | dmatval 22355* | The set of 𝑁 x 𝑁 diagonal matrices over (a ring) 𝑅. (Contributed by AV, 8-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | ||
| Theorem | dmatel 22356* | A 𝑁 x 𝑁 diagonal matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) | ||
| Theorem | dmatmat 22357 | An 𝑁 x 𝑁 diagonal matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝐷 → 𝑀 ∈ 𝐵)) | ||
| Theorem | dmatid 22358 | The identity matrix is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) | ||
| Theorem | dmatelnd 22359 | An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐼 ≠ 𝐽)) → (𝐼𝑋𝐽) = 0 ) | ||
| Theorem | dmatmul 22360* | The product of two diagonal matrices. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) | ||
| Theorem | dmatsubcl 22361 | The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(-g‘𝐴)𝑌) ∈ 𝐷) | ||
| Theorem | dmatsgrp 22362 | The set of diagonal matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) | ||
| Theorem | dmatmulcl 22363 | The product of two diagonal matrices is a diagonal matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) ∈ 𝐷) | ||
| Theorem | dmatsrng 22364 | The set of diagonal matrices is a subring of the matrix ring/algebra. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) | ||
| Theorem | dmatcrng 22365 | The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝐷) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing) | ||
| Theorem | dmatscmcl 22366 | The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑀 ∈ 𝐷)) → (𝐶 ∗ 𝑀) ∈ 𝐷) | ||
| Theorem | scmatval 22367* | The set of 𝑁 x 𝑁 scalar matrices over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) | ||
| Theorem | scmatel 22368* | An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) | ||
| Theorem | scmatscmid 22369* | A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) | ||
| Theorem | scmatscmide 22370 | An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) | ||
| Theorem | scmatscmiddistr 22371 | Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵)) → ((𝑆 ∗ 1 ) × (𝑇 ∗ 1 )) = ((𝑆 · 𝑇) ∗ 1 )) | ||
| Theorem | scmatmat 22372 | An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵)) | ||
| Theorem | scmate 22373* | An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. (Contributed by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) | ||
| Theorem | scmatmats 22374* | The set of an 𝑁 x 𝑁 scalar matrices over the ring 𝑅 expressed as a subset of 𝑁 x 𝑁 matrices over the ring 𝑅 with certain properties for their entries. (Contributed by AV, 31-Oct-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) | ||
| Theorem | scmateALT 22375* | Alternate proof of scmate 22373: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. This prove makes use of scmatmats 22374 but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) | ||
| Theorem | scmatscm 22376* | The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝐴) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 ∀𝑚 ∈ 𝐵 (𝐶 × 𝑚) = (𝑐 ∗ 𝑚)) | ||
| Theorem | scmatid 22377 | The identity matrix is a scalar matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) | ||
| Theorem | scmatdmat 22378 | A scalar matrix is a diagonal matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐷)) | ||
| Theorem | scmataddcl 22379 | The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐴)𝑌) ∈ 𝑆) | ||
| Theorem | scmatsubcl 22380 | The difference of two scalar matrices is a scalar matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(-g‘𝐴)𝑌) ∈ 𝑆) | ||
| Theorem | scmatmulcl 22381 | The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(.r‘𝐴)𝑌) ∈ 𝑆) | ||
| Theorem | scmatsgrp 22382 | The set of scalar matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐴)) | ||
| Theorem | scmatsrng 22383 | The set of scalar matrices is a subring of the matrix ring/algebra. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐴)) | ||
| Theorem | scmatcrng 22384 | The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝑆) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing) | ||
| Theorem | scmatsgrp1 22385 | The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝐷) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) | ||
| Theorem | scmatsrng1 22386 | The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) & ⊢ 𝐶 = (𝐴 ↾s 𝐷) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) | ||
| Theorem | smatvscl 22387 | Closure of the scalar multiplication in the ring of scalar matrices. (matvscl 22294 analog.) (Contributed by AV, 24-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑆)) → (𝐶 ∗ 𝑋) ∈ 𝑆) | ||
| Theorem | scmatlss 22388 | The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑆 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) | ||
| Theorem | scmatstrbas 22389 | The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶) | ||
| Theorem | scmatrhmval 22390* | The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) | ||
| Theorem | scmatrhmcl 22391* | The value of the ring homomorphism 𝐹 is a scalar matrix. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) ∈ 𝐶) | ||
| Theorem | scmatf 22392* | There is a function from a ring to any ring of scalar matrices over this ring. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) | ||
| Theorem | scmatfo 22393* | There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) | ||
| Theorem | scmatf1 22394* | There is a 1-1 function from a ring to any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 25-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–1-1→𝐶) | ||
| Theorem | scmatf1o 22395* | There is a bijection between a ring and any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 26-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–1-1-onto→𝐶) | ||
| Theorem | scmatghm 22396* | There is a group homomorphism from the additive group of a ring to the additive group of the ring of scalar matrices over this ring. (Contributed by AV, 22-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
| Theorem | scmatmhm 22397* | There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑇 = (mulGrp‘𝑆) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇)) | ||
| Theorem | scmatrhm 22398* | There is a ring homomorphism from a ring to the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | scmatrngiso 22399* | There is a ring isomorphism from a ring to the ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingIso 𝑆)) | ||
| Theorem | scmatric 22400 | A ring is isomorphic to every ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐶 = (𝑁 ScMat 𝑅) & ⊢ 𝑆 = (𝐴 ↾s 𝐶) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ≃𝑟 𝑆) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |