Home | Metamath
Proof Explorer Theorem List (p. 224 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cldlp 22301 | A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆)) | ||
Theorem | isperf 22302 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) | ||
Theorem | isperf2 22303 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) | ||
Theorem | isperf3 22304* | A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) | ||
Theorem | perflp 22305 | The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋) | ||
Theorem | perfi 22306 | Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑃 ∈ 𝑋) → ¬ {𝑃} ∈ 𝐽) | ||
Theorem | perftop 22307 | A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝐽 ∈ Perf → 𝐽 ∈ Top) | ||
Theorem | restrcl 22308 | Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | ||
Theorem | restbas 22309 | A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐵 ∈ TopBases → (𝐵 ↾t 𝐴) ∈ TopBases) | ||
Theorem | tgrest 22310 | A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) | ||
Theorem | resttop 22311 | A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) | ||
Theorem | resttopon 22312 | A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | ||
Theorem | restuni 22313 | The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | ||
Theorem | stoig 22314 | The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) | ||
Theorem | restco 22315 | Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) | ||
Theorem | restabs 22316 | Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) | ||
Theorem | restin 22317 | When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) | ||
Theorem | restuni2 22318 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) | ||
Theorem | resttopon2 22319 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) | ||
Theorem | rest0 22320 | The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) | ||
Theorem | restsn 22321 | The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) | ||
Theorem | restsn2 22322 | The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | ||
Theorem | restcld 22323* | A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘(𝐽 ↾t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥 ∩ 𝑆))) | ||
Theorem | restcldi 22324 | A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) | ||
Theorem | restcldr 22325 | A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) | ||
Theorem | restopnb 22326 | If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) | ||
Theorem | ssrest 22327 | If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) | ||
Theorem | restopn2 22328 | If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) | ||
Theorem | restdis 22329 | A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) | ||
Theorem | restfpw 22330 | The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin)) | ||
Theorem | neitr 22331 | The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴)) | ||
Theorem | restcls 22332 | A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
Theorem | restntr 22333 | An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 22332 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋 ∖ 𝑌))) ∩ 𝑌)) | ||
Theorem | restlp 22334 | The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌)) | ||
Theorem | restperf 22335 | Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) | ||
Theorem | perfopn 22336 | An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐾 ∈ Perf) | ||
Theorem | resstopn 22337 | The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐻 = (𝐾 ↾s 𝐴) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) | ||
Theorem | resstps 22338 | A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ TopSp) | ||
Theorem | ordtbaslem 22339* | Lemma for ordtbas 22343. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴) | ||
Theorem | ordtval 22340* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))))) | ||
Theorem | ordtuni 22341* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (𝐴 ∪ 𝐵))) | ||
Theorem | ordtbas2 22342* | Lemma for ordtbas 22343. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) | ||
Theorem | ordtbas 22343* | In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) = (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∪ 𝐶)) | ||
Theorem | ordttopon 22344 | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) | ||
Theorem | ordtopn1 22345* | An upward ray (𝑃, +∞) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅)) | ||
Theorem | ordtopn2 22346* | A downward ray (-∞, 𝑃) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅)) | ||
Theorem | ordtopn3 22347* | An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) | ||
Theorem | ordtcld1 22348* | A downward ray (-∞, 𝑃] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅))) | ||
Theorem | ordtcld2 22349* | An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) | ||
Theorem | ordtcld3 22350* | A closed interval [𝐴, 𝐵] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅))) | ||
Theorem | ordttop 22351 | The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ Top) | ||
Theorem | ordtcnv 22352 | The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ PosetRel → (ordTop‘◡𝑅) = (ordTop‘𝑅)) | ||
Theorem | ordtrest 22353 | The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) | ||
Theorem | ordtrest2lem 22354* | Lemma for ordtrest2 22355. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ (𝜑 → 𝑅 ∈ TosetRel ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) | ||
Theorem | ordtrest2 22355* | An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in ℝ, but in other sets like ℚ there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ (𝜑 → 𝑅 ∈ TosetRel ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴)) | ||
Theorem | letopon 22356 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | ||
Theorem | letop 22357 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (ordTop‘ ≤ ) ∈ Top | ||
Theorem | letopuni 22358 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ℝ* = ∪ (ordTop‘ ≤ ) | ||
Theorem | xrstopn 22359 | The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠) | ||
Theorem | xrstps 22360 | The extended real number structure is a topological space. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 ∈ TopSp | ||
Theorem | leordtvallem1 22361* | Lemma for leordtval 22364. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⇒ ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) | ||
Theorem | leordtvallem2 22362* | Lemma for leordtval 22364. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) & ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⇒ ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) | ||
Theorem | leordtval2 22363 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) & ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⇒ ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) | ||
Theorem | leordtval 22364 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) & ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) & ⊢ 𝐶 = ran (,) ⇒ ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) | ||
Theorem | iccordt 22365 | A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) | ||
Theorem | iocpnfordt 22366 | An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝐴(,]+∞) ∈ (ordTop‘ ≤ ) | ||
Theorem | icomnfordt 22367 | An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (-∞[,)𝐴) ∈ (ordTop‘ ≤ ) | ||
Theorem | iooordt 22368 | An open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝐴(,)𝐵) ∈ (ordTop‘ ≤ ) | ||
Theorem | reordt 22369 | The real numbers are an open set in the topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ℝ ∈ (ordTop‘ ≤ ) | ||
Theorem | lecldbas 22370 | The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ* ∖ 𝑥)) ⇒ ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹)) | ||
Theorem | pnfnei 22371* | A neighborhood of +∞ contains an unbounded interval based at a real number. Together with xrtgioo 23969 (which describes neighborhoods of ℝ) and mnfnei 22372, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 22368 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) | ||
Theorem | mnfnei 22372* | A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴) | ||
Theorem | ordtrestixx 22373* | The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐴 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) ⇒ ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) | ||
Theorem | ordtresticc 22374 | The restriction of the less than order to a closed interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ ((ordTop‘ ≤ ) ↾t (𝐴[,]𝐵)) = (ordTop‘( ≤ ∩ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) | ||
Syntax | ccn 22375 | Extend class notation with the class of continuous functions between topologies. |
class Cn | ||
Syntax | ccnp 22376 | Extend class notation with the class of functions between topologies continuous at a given point. |
class CnP | ||
Syntax | clm 22377 | Extend class notation with a function on topological spaces whose value is the convergence relation for limit sequences in the space. |
class ⇝𝑡 | ||
Definition | df-cn 22378* | Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 22386 for the predicate form. (Contributed by NM, 17-Oct-2006.) |
⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) | ||
Definition | df-cnp 22379* | Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) |
⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) | ||
Definition | df-lm 22380* | Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π · 𝑥))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.) |
⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | ||
Theorem | lmrel 22381 | The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ Rel (⇝𝑡‘𝐽) | ||
Theorem | lmrcl 22382 | Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) | ||
Theorem | lmfval 22383* | The relation "sequence 𝑓 converges to point 𝑦 " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧ 𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | ||
Theorem | cnfval 22384* | The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | ||
Theorem | cnpfval 22385* | The function mapping the points in a topology 𝐽 to the set of all functions from 𝐽 to topology 𝐾 continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) | ||
Theorem | iscn 22386* | The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | ||
Theorem | cnpval 22387* | The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) | ||
Theorem | iscnp 22388* | The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | ||
Theorem | iscn2 22389* | The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | ||
Theorem | iscnp2 22390* | The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | ||
Theorem | cntop1 22391 | Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | ||
Theorem | cntop2 22392 | Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | ||
Theorem | cnptop1 22393 | Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) | ||
Theorem | cnptop2 22394 | Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) | ||
Theorem | iscnp3 22395* | The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". (Contributed by NM, 15-May-2007.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) | ||
Theorem | cnprcl 22396 | Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ 𝑋) | ||
Theorem | cnf 22397 | A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) | ||
Theorem | cnpf 22398 | A continuous function at point 𝑃 is a mapping. (Contributed by FL, 17-Nov-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶𝑌) | ||
Theorem | cnpcl 22399 | The value of a continuous function from 𝐽 to 𝐾 at point 𝑃 belongs to the underlying set of topology 𝐾. (Contributed by FL, 27-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ 𝑌) | ||
Theorem | cnf2 22400 | A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |