Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pmtr Structured version   Visualization version   GIF version

Definition df-pmtr 18566
 Description: Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
df-pmtr pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Distinct variable group:   𝑝,𝑑,𝑦,𝑧

Detailed syntax breakdown of Definition df-pmtr
StepHypRef Expression
1 cpmtr 18565 . 2 class pmTrsp
2 vd . . 3 setvar 𝑑
3 cvv 3444 . . 3 class V
4 vp . . . 4 setvar 𝑝
5 vy . . . . . . 7 setvar 𝑦
65cv 1537 . . . . . 6 class 𝑦
7 c2o 8083 . . . . . 6 class 2o
8 cen 8493 . . . . . 6 class
96, 7, 8wbr 5033 . . . . 5 wff 𝑦 ≈ 2o
102cv 1537 . . . . . 6 class 𝑑
1110cpw 4500 . . . . 5 class 𝒫 𝑑
129, 5, 11crab 3113 . . . 4 class {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o}
13 vz . . . . 5 setvar 𝑧
1413, 4wel 2113 . . . . . 6 wff 𝑧𝑝
154cv 1537 . . . . . . . 8 class 𝑝
1613cv 1537 . . . . . . . . 9 class 𝑧
1716csn 4528 . . . . . . . 8 class {𝑧}
1815, 17cdif 3881 . . . . . . 7 class (𝑝 ∖ {𝑧})
1918cuni 4803 . . . . . 6 class (𝑝 ∖ {𝑧})
2014, 19, 16cif 4428 . . . . 5 class if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)
2113, 10, 20cmpt 5113 . . . 4 class (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))
224, 12, 21cmpt 5113 . . 3 class (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
232, 3, 22cmpt 5113 . 2 class (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
241, 23wceq 1538 1 wff pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
 Colors of variables: wff setvar class This definition is referenced by:  pmtrfval  18574
 Copyright terms: Public domain W3C validator