Detailed syntax breakdown of Definition df-pmtr
| Step | Hyp | Ref
| Expression |
| 1 | | cpmtr 19459 |
. 2
class
pmTrsp |
| 2 | | vd |
. . 3
setvar 𝑑 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vp |
. . . 4
setvar 𝑝 |
| 5 | | vy |
. . . . . . 7
setvar 𝑦 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑦 |
| 7 | | c2o 8500 |
. . . . . 6
class
2o |
| 8 | | cen 8982 |
. . . . . 6
class
≈ |
| 9 | 6, 7, 8 | wbr 5143 |
. . . . 5
wff 𝑦 ≈
2o |
| 10 | 2 | cv 1539 |
. . . . . 6
class 𝑑 |
| 11 | 10 | cpw 4600 |
. . . . 5
class 𝒫
𝑑 |
| 12 | 9, 5, 11 | crab 3436 |
. . . 4
class {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} |
| 13 | | vz |
. . . . 5
setvar 𝑧 |
| 14 | 13, 4 | wel 2109 |
. . . . . 6
wff 𝑧 ∈ 𝑝 |
| 15 | 4 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 16 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 17 | 16 | csn 4626 |
. . . . . . . 8
class {𝑧} |
| 18 | 15, 17 | cdif 3948 |
. . . . . . 7
class (𝑝 ∖ {𝑧}) |
| 19 | 18 | cuni 4907 |
. . . . . 6
class ∪ (𝑝
∖ {𝑧}) |
| 20 | 14, 19, 16 | cif 4525 |
. . . . 5
class if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧) |
| 21 | 13, 10, 20 | cmpt 5225 |
. . . 4
class (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) |
| 22 | 4, 12, 21 | cmpt 5225 |
. . 3
class (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) |
| 23 | 2, 3, 22 | cmpt 5225 |
. 2
class (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| 24 | 1, 23 | wceq 1540 |
1
wff pmTrsp =
(𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |