MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfval Structured version   Visualization version   GIF version

Theorem pmtrfval 19437
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfval (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Distinct variable groups:   𝑦,𝑝,𝑧,𝐷   𝑇,𝑝,𝑦,𝑧   𝑧,𝑉
Allowed substitution hints:   𝑉(𝑦,𝑝)

Proof of Theorem pmtrfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . 2 𝑇 = (pmTrsp‘𝐷)
2 elex 3484 . . 3 (𝐷𝑉𝐷 ∈ V)
3 pweq 4594 . . . . . 6 (𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷)
43rabeqdv 3435 . . . . 5 (𝑑 = 𝐷 → {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} = {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
5 mpteq1 5215 . . . . 5 (𝑑 = 𝐷 → (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
64, 5mpteq12dv 5213 . . . 4 (𝑑 = 𝐷 → (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
7 df-pmtr 19429 . . . 4 pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
8 vpwex 5357 . . . . 5 𝒫 𝑑 ∈ V
98mptrabex 7227 . . . 4 (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∈ V
106, 7, 9fvmpt3i 7001 . . 3 (𝐷 ∈ V → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
112, 10syl 17 . 2 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
121, 11eqtrid 2781 1 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463  cdif 3928  ifcif 4505  𝒫 cpw 4580  {csn 4606   cuni 4887   class class class wbr 5123  cmpt 5205  cfv 6541  2oc2o 8482  cen 8964  pmTrspcpmtr 19428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-pmtr 19429
This theorem is referenced by:  pmtrval  19438  pmtrrn  19444  pmtrfrn  19445  pmtrprfval  19474  pmtrsn  19506  trsp2cyc  33087
  Copyright terms: Public domain W3C validator