| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrfval | Structured version Visualization version GIF version | ||
| Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrfval | ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | . 2 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | elex 3471 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
| 3 | pweq 4580 | . . . . . 6 ⊢ (𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷) | |
| 4 | 3 | rabeqdv 3424 | . . . . 5 ⊢ (𝑑 = 𝐷 → {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} = {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o}) |
| 5 | mpteq1 5199 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) | |
| 6 | 4, 5 | mpteq12dv 5197 | . . . 4 ⊢ (𝑑 = 𝐷 → (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| 7 | df-pmtr 19379 | . . . 4 ⊢ pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | |
| 8 | vpwex 5335 | . . . . 5 ⊢ 𝒫 𝑑 ∈ V | |
| 9 | 8 | mptrabex 7202 | . . . 4 ⊢ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) ∈ V |
| 10 | 6, 7, 9 | fvmpt3i 6976 | . . 3 ⊢ (𝐷 ∈ V → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝐷 ∈ 𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| 12 | 1, 11 | eqtrid 2777 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∖ cdif 3914 ifcif 4491 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 2oc2o 8431 ≈ cen 8918 pmTrspcpmtr 19378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-pmtr 19379 |
| This theorem is referenced by: pmtrval 19388 pmtrrn 19394 pmtrfrn 19395 pmtrprfval 19424 pmtrsn 19456 trsp2cyc 33087 |
| Copyright terms: Public domain | W3C validator |