MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfval Structured version   Visualization version   GIF version

Theorem pmtrfval 18572
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfval (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Distinct variable groups:   𝑦,𝑝,𝑧,𝐷   𝑇,𝑝,𝑦,𝑧   𝑧,𝑉
Allowed substitution hints:   𝑉(𝑦,𝑝)

Proof of Theorem pmtrfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . 2 𝑇 = (pmTrsp‘𝐷)
2 elex 3513 . . 3 (𝐷𝑉𝐷 ∈ V)
3 pweq 4542 . . . . . 6 (𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷)
43rabeqdv 3485 . . . . 5 (𝑑 = 𝐷 → {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} = {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
5 mpteq1 5147 . . . . 5 (𝑑 = 𝐷 → (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
64, 5mpteq12dv 5144 . . . 4 (𝑑 = 𝐷 → (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
7 df-pmtr 18564 . . . 4 pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
8 vpwex 5271 . . . . 5 𝒫 𝑑 ∈ V
98mptrabex 6982 . . . 4 (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∈ V
106, 7, 9fvmpt3i 6768 . . 3 (𝐷 ∈ V → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
112, 10syl 17 . 2 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
121, 11syl5eq 2868 1 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3495  cdif 3933  ifcif 4467  𝒫 cpw 4539  {csn 4561   cuni 4832   class class class wbr 5059  cmpt 5139  cfv 6350  2oc2o 8090  cen 8500  pmTrspcpmtr 18563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-pmtr 18564
This theorem is referenced by:  pmtrval  18573  pmtrrn  18579  pmtrfrn  18580  pmtrprfval  18609  pmtrsn  18641  trsp2cyc  30760
  Copyright terms: Public domain W3C validator