MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfval Structured version   Visualization version   GIF version

Theorem pmtrfval 19364
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfval (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Distinct variable groups:   𝑦,𝑝,𝑧,𝐷   𝑇,𝑝,𝑦,𝑧   𝑧,𝑉
Allowed substitution hints:   𝑉(𝑦,𝑝)

Proof of Theorem pmtrfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . 2 𝑇 = (pmTrsp‘𝐷)
2 elex 3458 . . 3 (𝐷𝑉𝐷 ∈ V)
3 pweq 4563 . . . . . 6 (𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷)
43rabeqdv 3411 . . . . 5 (𝑑 = 𝐷 → {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} = {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
5 mpteq1 5182 . . . . 5 (𝑑 = 𝐷 → (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
64, 5mpteq12dv 5180 . . . 4 (𝑑 = 𝐷 → (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
7 df-pmtr 19356 . . . 4 pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
8 vpwex 5317 . . . . 5 𝒫 𝑑 ∈ V
98mptrabex 7165 . . . 4 (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∈ V
106, 7, 9fvmpt3i 6940 . . 3 (𝐷 ∈ V → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
112, 10syl 17 . 2 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
121, 11eqtrid 2780 1 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  ifcif 4474  𝒫 cpw 4549  {csn 4575   cuni 4858   class class class wbr 5093  cmpt 5174  cfv 6486  2oc2o 8385  cen 8872  pmTrspcpmtr 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-pmtr 19356
This theorem is referenced by:  pmtrval  19365  pmtrrn  19371  pmtrfrn  19372  pmtrprfval  19401  pmtrsn  19433  trsp2cyc  33099
  Copyright terms: Public domain W3C validator