![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrfval | Structured version Visualization version GIF version |
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrfval | ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrfval.t | . 2 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | elex 3492 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
3 | pweq 4620 | . . . . . 6 ⊢ (𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷) | |
4 | 3 | rabeqdv 3446 | . . . . 5 ⊢ (𝑑 = 𝐷 → {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} = {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o}) |
5 | mpteq1 5245 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) | |
6 | 4, 5 | mpteq12dv 5243 | . . . 4 ⊢ (𝑑 = 𝐷 → (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
7 | df-pmtr 19404 | . . . 4 ⊢ pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | |
8 | vpwex 5381 | . . . . 5 ⊢ 𝒫 𝑑 ∈ V | |
9 | 8 | mptrabex 7243 | . . . 4 ⊢ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) ∈ V |
10 | 6, 7, 9 | fvmpt3i 7015 | . . 3 ⊢ (𝐷 ∈ V → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝐷 ∈ 𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
12 | 1, 11 | eqtrid 2780 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3430 Vcvv 3473 ∖ cdif 3946 ifcif 4532 𝒫 cpw 4606 {csn 4632 ∪ cuni 4912 class class class wbr 5152 ↦ cmpt 5235 ‘cfv 6553 2oc2o 8487 ≈ cen 8967 pmTrspcpmtr 19403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-pmtr 19404 |
This theorem is referenced by: pmtrval 19413 pmtrrn 19419 pmtrfrn 19420 pmtrprfval 19449 pmtrsn 19481 trsp2cyc 32865 |
Copyright terms: Public domain | W3C validator |