MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfval Structured version   Visualization version   GIF version

Theorem pmtrfval 19347
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfval (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Distinct variable groups:   𝑦,𝑝,𝑧,𝐷   𝑇,𝑝,𝑦,𝑧   𝑧,𝑉
Allowed substitution hints:   𝑉(𝑦,𝑝)

Proof of Theorem pmtrfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . 2 𝑇 = (pmTrsp‘𝐷)
2 elex 3459 . . 3 (𝐷𝑉𝐷 ∈ V)
3 pweq 4567 . . . . . 6 (𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷)
43rabeqdv 3412 . . . . 5 (𝑑 = 𝐷 → {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} = {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
5 mpteq1 5184 . . . . 5 (𝑑 = 𝐷 → (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
64, 5mpteq12dv 5182 . . . 4 (𝑑 = 𝐷 → (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
7 df-pmtr 19339 . . . 4 pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
8 vpwex 5319 . . . . 5 𝒫 𝑑 ∈ V
98mptrabex 7165 . . . 4 (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∈ V
106, 7, 9fvmpt3i 6939 . . 3 (𝐷 ∈ V → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
112, 10syl 17 . 2 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
121, 11eqtrid 2776 1 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cdif 3902  ifcif 4478  𝒫 cpw 4553  {csn 4579   cuni 4861   class class class wbr 5095  cmpt 5176  cfv 6486  2oc2o 8389  cen 8876  pmTrspcpmtr 19338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-pmtr 19339
This theorem is referenced by:  pmtrval  19348  pmtrrn  19354  pmtrfrn  19355  pmtrprfval  19384  pmtrsn  19416  trsp2cyc  33078
  Copyright terms: Public domain W3C validator