MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdmvd Structured version   Visualization version   GIF version

Theorem f1omvdmvd 19485
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdmvd ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))

Proof of Theorem f1omvdmvd
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋 ∈ dom (𝐹 ∖ I ))
2 f1ofn 6863 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
3 difss 4159 . . . . . . . . 9 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5927 . . . . . . . . 9 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 f1odm 6866 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → dom 𝐹 = 𝐴)
75, 6sseqtrid 4061 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) ⊆ 𝐴)
87sselda 4008 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋𝐴)
9 fnelnfp 7211 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
102, 8, 9syl2an2r 684 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
111, 10mpbid 232 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ≠ 𝑋)
12 f1of1 6861 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1𝐴)
1312adantr 480 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴1-1𝐴)
14 f1of 6862 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
1514adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴𝐴)
1615, 8ffvelcdmd 7119 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ 𝐴)
17 f1fveq 7299 . . . . . 6 ((𝐹:𝐴1-1𝐴 ∧ ((𝐹𝑋) ∈ 𝐴𝑋𝐴)) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1813, 16, 8, 17syl12anc 836 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1918necon3bid 2991 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋) ↔ (𝐹𝑋) ≠ 𝑋))
2011, 19mpbird 257 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋))
21 fnelnfp 7211 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) ∈ 𝐴) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
222, 16, 21syl2an2r 684 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
2320, 22mpbird 257 . 2 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ dom (𝐹 ∖ I ))
24 eldifsn 4811 . 2 ((𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}) ↔ ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ∧ (𝐹𝑋) ≠ 𝑋))
2523, 11, 24sylanbrc 582 1 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  {csn 4648   I cid 5592  dom cdm 5700   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-f1o 6580  df-fv 6581
This theorem is referenced by:  f1otrspeq  19489  symggen  19512  pmtrcnel  33082  pmtrcnelor  33084
  Copyright terms: Public domain W3C validator