MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdmvd Structured version   Visualization version   GIF version

Theorem f1omvdmvd 18500
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdmvd ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))

Proof of Theorem f1omvdmvd
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋 ∈ dom (𝐹 ∖ I ))
2 f1ofn 6609 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
3 difss 4105 . . . . . . . . 9 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5764 . . . . . . . . 9 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 f1odm 6612 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → dom 𝐹 = 𝐴)
75, 6sseqtrid 4016 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) ⊆ 𝐴)
87sselda 3964 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋𝐴)
9 fnelnfp 6931 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
102, 8, 9syl2an2r 681 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
111, 10mpbid 233 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ≠ 𝑋)
12 f1of1 6607 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1𝐴)
1312adantr 481 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴1-1𝐴)
14 f1of 6608 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
1514adantr 481 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴𝐴)
1615, 8ffvelrnd 6844 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ 𝐴)
17 f1fveq 7011 . . . . . 6 ((𝐹:𝐴1-1𝐴 ∧ ((𝐹𝑋) ∈ 𝐴𝑋𝐴)) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1813, 16, 8, 17syl12anc 832 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1918necon3bid 3057 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋) ↔ (𝐹𝑋) ≠ 𝑋))
2011, 19mpbird 258 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋))
21 fnelnfp 6931 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) ∈ 𝐴) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
222, 16, 21syl2an2r 681 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
2320, 22mpbird 258 . 2 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ dom (𝐹 ∖ I ))
24 eldifsn 4711 . 2 ((𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}) ↔ ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ∧ (𝐹𝑋) ≠ 𝑋))
2523, 11, 24sylanbrc 583 1 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  cdif 3930  wss 3933  {csn 4557   I cid 5452  dom cdm 5548   Fn wfn 6343  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-f1o 6355  df-fv 6356
This theorem is referenced by:  f1otrspeq  18504  symggen  18527  pmtrcnel  30660  pmtrcnelor  30662
  Copyright terms: Public domain W3C validator