MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdmvd Structured version   Visualization version   GIF version

Theorem f1omvdmvd 19353
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdmvd ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))

Proof of Theorem f1omvdmvd
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋 ∈ dom (𝐹 ∖ I ))
2 f1ofn 6834 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
3 difss 4131 . . . . . . . . 9 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5902 . . . . . . . . 9 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 f1odm 6837 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → dom 𝐹 = 𝐴)
75, 6sseqtrid 4034 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) ⊆ 𝐴)
87sselda 3982 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋𝐴)
9 fnelnfp 7177 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
102, 8, 9syl2an2r 682 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
111, 10mpbid 231 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ≠ 𝑋)
12 f1of1 6832 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1𝐴)
1312adantr 480 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴1-1𝐴)
14 f1of 6833 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
1514adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴𝐴)
1615, 8ffvelcdmd 7087 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ 𝐴)
17 f1fveq 7264 . . . . . 6 ((𝐹:𝐴1-1𝐴 ∧ ((𝐹𝑋) ∈ 𝐴𝑋𝐴)) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1813, 16, 8, 17syl12anc 834 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1918necon3bid 2984 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋) ↔ (𝐹𝑋) ≠ 𝑋))
2011, 19mpbird 257 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋))
21 fnelnfp 7177 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) ∈ 𝐴) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
222, 16, 21syl2an2r 682 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
2320, 22mpbird 257 . 2 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ dom (𝐹 ∖ I ))
24 eldifsn 4790 . 2 ((𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}) ↔ ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ∧ (𝐹𝑋) ≠ 𝑋))
2523, 11, 24sylanbrc 582 1 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  cdif 3945  wss 3948  {csn 4628   I cid 5573  dom cdm 5676   Fn wfn 6538  wf 6539  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-f1o 6550  df-fv 6551
This theorem is referenced by:  f1otrspeq  19357  symggen  19380  pmtrcnel  32521  pmtrcnelor  32523
  Copyright terms: Public domain W3C validator