MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdmvd Structured version   Visualization version   GIF version

Theorem f1omvdmvd 19155
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdmvd ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))

Proof of Theorem f1omvdmvd
StepHypRef Expression
1 simpr 486 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋 ∈ dom (𝐹 ∖ I ))
2 f1ofn 6780 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
3 difss 4089 . . . . . . . . 9 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5854 . . . . . . . . 9 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 f1odm 6783 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → dom 𝐹 = 𝐴)
75, 6sseqtrid 3994 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) ⊆ 𝐴)
87sselda 3942 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋𝐴)
9 fnelnfp 7117 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
102, 8, 9syl2an2r 683 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
111, 10mpbid 231 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ≠ 𝑋)
12 f1of1 6778 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1𝐴)
1312adantr 482 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴1-1𝐴)
14 f1of 6779 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
1514adantr 482 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴𝐴)
1615, 8ffvelcdmd 7030 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ 𝐴)
17 f1fveq 7203 . . . . . 6 ((𝐹:𝐴1-1𝐴 ∧ ((𝐹𝑋) ∈ 𝐴𝑋𝐴)) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1813, 16, 8, 17syl12anc 835 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1918necon3bid 2986 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋) ↔ (𝐹𝑋) ≠ 𝑋))
2011, 19mpbird 257 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋))
21 fnelnfp 7117 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) ∈ 𝐴) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
222, 16, 21syl2an2r 683 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
2320, 22mpbird 257 . 2 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ dom (𝐹 ∖ I ))
24 eldifsn 4745 . 2 ((𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}) ↔ ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ∧ (𝐹𝑋) ≠ 𝑋))
2523, 11, 24sylanbrc 584 1 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wne 2941  cdif 3905  wss 3908  {csn 4584   I cid 5527  dom cdm 5630   Fn wfn 6486  wf 6487  1-1wf1 6488  1-1-ontowf1o 6490  cfv 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-id 5528  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-f1o 6498  df-fv 6499
This theorem is referenced by:  f1otrspeq  19159  symggen  19182  pmtrcnel  31712  pmtrcnelor  31714
  Copyright terms: Public domain W3C validator