MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdmvd Structured version   Visualization version   GIF version

Theorem f1omvdmvd 19350
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdmvd ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))

Proof of Theorem f1omvdmvd
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋 ∈ dom (𝐹 ∖ I ))
2 f1ofn 6759 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
3 difss 4081 . . . . . . . . 9 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5837 . . . . . . . . 9 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 f1odm 6762 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴 → dom 𝐹 = 𝐴)
75, 6sseqtrid 3972 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) ⊆ 𝐴)
87sselda 3929 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝑋𝐴)
9 fnelnfp 7106 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
102, 8, 9syl2an2r 685 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑋) ≠ 𝑋))
111, 10mpbid 232 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ≠ 𝑋)
12 f1of1 6757 . . . . . . 7 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1𝐴)
1312adantr 480 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴1-1𝐴)
14 f1of 6758 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
1514adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → 𝐹:𝐴𝐴)
1615, 8ffvelcdmd 7013 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ 𝐴)
17 f1fveq 7191 . . . . . 6 ((𝐹:𝐴1-1𝐴 ∧ ((𝐹𝑋) ∈ 𝐴𝑋𝐴)) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1813, 16, 8, 17syl12anc 836 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑋))
1918necon3bid 2972 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋) ↔ (𝐹𝑋) ≠ 𝑋))
2011, 19mpbird 257 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋))
21 fnelnfp 7106 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) ∈ 𝐴) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
222, 16, 21syl2an2r 685 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(𝐹𝑋)) ≠ (𝐹𝑋)))
2320, 22mpbird 257 . 2 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ dom (𝐹 ∖ I ))
24 eldifsn 4733 . 2 ((𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}) ↔ ((𝐹𝑋) ∈ dom (𝐹 ∖ I ) ∧ (𝐹𝑋) ≠ 𝑋))
2523, 11, 24sylanbrc 583 1 ((𝐹:𝐴1-1-onto𝐴𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  wss 3897  {csn 4571   I cid 5505  dom cdm 5611   Fn wfn 6471  wf 6472  1-1wf1 6473  1-1-ontowf1o 6475  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-f1o 6483  df-fv 6484
This theorem is referenced by:  f1otrspeq  19354  symggen  19377  pmtrcnel  33050  pmtrcnelor  33052
  Copyright terms: Public domain W3C validator