| Metamath
Proof Explorer Theorem List (p. 194 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30865) |
(30866-32388) |
(32389-49332) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | orbsta2 19301* | Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻))) | ||
| Syntax | ccntz 19302 | Syntax for the centralizer of a set in a monoid. |
| class Cntz | ||
| Syntax | ccntr 19303 | Syntax for the centralizer of a monoid. |
| class Cntr | ||
| Definition | df-cntz 19304* | Define the centralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | ||
| Definition | df-cntr 19305 | Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | ||
| Theorem | cntrval 19306 | Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) | ||
| Theorem | cntzfval 19307* | First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) | ||
| Theorem | cntzval 19308* | Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) | ||
| Theorem | elcntz 19309* | Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) | ||
| Theorem | cntzel 19310* | Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))) | ||
| Theorem | cntzsnval 19311* | Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) | ||
| Theorem | elcntzsn 19312 | Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))) | ||
| Theorem | sscntz 19313* | A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
| Theorem | cntzrcl 19314 | Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) | ||
| Theorem | cntzssv 19315 | The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝑆) ⊆ 𝐵 | ||
| Theorem | cntzi 19316 | Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | elcntr 19317* | Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝑍 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))) | ||
| Theorem | cntrss 19318 | The center is a subset of the base field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (Cntr‘𝑀) ⊆ 𝐵 | ||
| Theorem | cntri 19319 | Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | resscntz 19320 | Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑌‘𝑆) = ((𝑍‘𝑆) ∩ 𝐴)) | ||
| Theorem | cntzsgrpcl 19321* | Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) & ⊢ 𝐶 = (𝑍‘𝑆) ⇒ ⊢ ((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑦(+g‘𝑀)𝑧) ∈ 𝐶) | ||
| Theorem | cntz2ss 19322 | Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) | ||
| Theorem | cntzrec 19323 | Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) | ||
| Theorem | cntziinsn 19324* | Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) | ||
| Theorem | cntzsubm 19325 | Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) | ||
| Theorem | cntzsubg 19326 | Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubGrp‘𝑀)) | ||
| Theorem | cntzidss 19327 | If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) | ||
| Theorem | cntzmhm 19328 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆))) | ||
| Theorem | cntzmhm2 19329 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) | ||
| Theorem | cntrsubgnsg 19330 | A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀)) | ||
| Theorem | cntrnsg 19331 | The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝑀 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝑀)) | ||
| Syntax | coppg 19332 | The opposite group operation. |
| class oppg | ||
| Definition | df-oppg 19333 | Define an opposite group, which is the same as the original group but with addition written the other way around. df-oppr 20302 does the same thing for multiplication. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ oppg = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), tpos (+g‘𝑤)〉)) | ||
| Theorem | oppgval 19334 | Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) | ||
| Theorem | oppgplusfval 19335 | Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ ✚ = tpos + | ||
| Theorem | oppgplus 19336 | Value of the addition operation of an opposite ring. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) | ||
| Theorem | setsplusg 19337 | The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
| ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (+g‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
| Theorem | oppgbas 19338 | Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
| Theorem | oppgtset 19339 | Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐽 = (TopSet‘𝑅) ⇒ ⊢ 𝐽 = (TopSet‘𝑂) | ||
| Theorem | oppgtopn 19340 | Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) ⇒ ⊢ 𝐽 = (TopOpen‘𝑂) | ||
| Theorem | oppgmnd 19341 | The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) | ||
| Theorem | oppgmndb 19342 | Bidirectional form of oppgmnd 19341. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) | ||
| Theorem | oppgid 19343 | Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 0 = (0g‘𝑂) | ||
| Theorem | oppggrp 19344 | The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) | ||
| Theorem | oppggrpb 19345 | Bidirectional form of oppggrp 19344. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) | ||
| Theorem | oppginv 19346 | Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) | ||
| Theorem | invoppggim 19347 | The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂)) | ||
| Theorem | oppggic 19348 | Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐺 ≃𝑔 𝑂) | ||
| Theorem | oppgsubm 19349 | Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) | ||
| Theorem | oppgsubg 19350 | Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) | ||
| Theorem | oppgcntz 19351 | A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) | ||
| Theorem | oppgcntr 19352 | The center of a group is the same as the center of the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) ⇒ ⊢ 𝑍 = (Cntr‘𝑂) | ||
| Theorem | gsumwrev 19353 | A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑂 = (oppg‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))) | ||
According to Wikipedia ("Symmetric group", 09-Mar-2019,
https://en.wikipedia.org/wiki/symmetric_group) "In abstract algebra, the
symmetric group defined over any set is the group whose elements are all the
bijections from the set to itself, and whose group operation is the composition
of functions." and according to Encyclopedia of Mathematics ("Symmetric group",
09-Mar-2019, https://www.encyclopediaofmath.org/index.php/Symmetric_group)
"The group of all permutations (self-bijections) of a set with the operation of
composition (see Permutation group).". In [Rotman] p. 27 "If X is a nonempty
set, a permutation of X is a function a : X -> X that is a one-to-one
correspondence." and "If X is a nonempty set, the symmetric group on X, denoted
SX, is the group whose elements are the permutations of X and whose
binary operation is composition of functions.". Therefore, we define the
symmetric group on a set 𝐴 as the set of one-to-one onto functions
from 𝐴 to itself under function composition, see df-symg 19355. However, the
set is allowed to be empty, see symgbas0 19374. Hint: The symmetric groups
should not be confused with "symmetry groups" which is a different topic in
group theory.
| ||
| Syntax | csymg 19354 | Extend class notation to include the class of symmetric groups. |
| class SymGrp | ||
| Definition | df-symg 19355* | Define the symmetric group on set 𝑥. We represent the group as the set of one-to-one onto functions from 𝑥 to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.) |
| ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | ||
| Theorem | symgval 19356* | The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⇒ ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) | ||
| Theorem | symgbas 19357* | The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.) (Proof shortened by AV, 29-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | ||
| Theorem | elsymgbas2 19358 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
| Theorem | elsymgbas 19359 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
| Theorem | symgbasf1o 19360 | Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | symgbasf 19361 | A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴⟶𝐴) | ||
| Theorem | symgbasmap 19362 | A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (𝐴 ↑m 𝐴)) | ||
| Theorem | symghash 19363 | The symmetric group on 𝑛 objects has cardinality 𝑛!. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴))) | ||
| Theorem | symgbasfi 19364 | The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) | ||
| Theorem | symgfv 19365 | The function value of a permutation. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐴) | ||
| Theorem | symgfvne 19366 | The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))) | ||
| Theorem | symgressbas 19367 | The symmetric group on 𝐴 characterized as structure restriction of the monoid of endofunctions on 𝐴 to its base set. (Contributed by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 = (𝑀 ↾s 𝐵) | ||
| Theorem | symgplusg 19368* | The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Proof shortened by AV, 19-Feb-2024.) (Revised by AV, 29-Mar-2024.) (Proof shortened by AV, 14-Aug-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (𝐴 ↑m 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | ||
| Theorem | symgov 19369 | The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
| Theorem | symgcl 19370 | The group operation of the symmetric group on 𝐴 is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | idresperm 19371 | The identity function restricted to a set is a permutation of this set. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) | ||
| Theorem | symgmov1 19372* | For a permutation of a set, each element of the set replaces an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑛) = 𝑘) | ||
| Theorem | symgmov2 19373* | For a permutation of a set, each element of the set is replaced by an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑛) | ||
| Theorem | symgbas0 19374 | The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019.) |
| ⊢ (Base‘(SymGrp‘∅)) = {∅} | ||
| Theorem | symg1hash 19375 | The symmetric group on a singleton has cardinality 1. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → (♯‘𝐵) = 1) | ||
| Theorem | symg1bas 19376 | The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) | ||
| Theorem | symg2hash 19377 | The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 2) | ||
| Theorem | symg2bas 19378 | The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see Theorem symg1bas 19376. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊) → 𝐵 = {{〈𝐼, 𝐼〉, 〈𝐽, 𝐽〉}, {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}}) | ||
| Theorem | 0symgefmndeq 19379 | The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024.) |
| ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | ||
| Theorem | snsymgefmndeq 19380 | The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) | ||
| Theorem | symgpssefmnd 19381 | For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) | ||
| Theorem | symgvalstruct 19382* | The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (Proof shortened by AV, 6-Nov-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} & ⊢ 𝑀 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
| Theorem | symgvalstructOLD 19383* | Obsolete version of symgvalstruct 19382 as of 6-Nov-2024. The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} & ⊢ 𝑀 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
| Theorem | symgsubmefmnd 19384 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
| Theorem | symgtset 19385 | The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | ||
| Theorem | symggrp 19386 | The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) | ||
| Theorem | symgid 19387 | The group identity element of the symmetric group on a set 𝐴. (Contributed by Paul Chapman, 25-Jul-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 1-Apr-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) | ||
| Theorem | symginv 19388 | The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) | ||
| Theorem | symgsubmefmndALT 19389 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18787 and not on injsubmefmnd 18879 and sursubmefmnd 18878. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
| Theorem | galactghm 19390* | The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥 ⊕ 𝑦))) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | lactghmga 19391* | The converse of galactghm 19390. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝐹‘𝑥)‘𝑦)) ⇒ ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) | ||
| Theorem | symgtopn 19392 | The topology of the symmetric group on 𝐴. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺)) | ||
| Theorem | symgga 19393* | The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (𝑓 ∈ 𝐵, 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐹 ∈ (𝐺 GrpAct 𝑋)) | ||
| Theorem | pgrpsubgsymgbi 19394 | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑃 ∈ (SubGrp‘𝐺) ↔ (𝑃 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑃) ∈ Grp))) | ||
| Theorem | pgrpsubgsymg 19395* | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (Base‘𝑃) ⇒ ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) | ||
| Theorem | idressubgsymg 19396 | The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺)) | ||
| Theorem | idrespermg 19397 | The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | ||
| Theorem | cayleylem1 19398* | Lemma for cayley 19400. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | cayleylem2 19399* | Lemma for cayley 19400. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) | ||
| Theorem | cayley 19400* | Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑆 = ran 𝐹 ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |