| Metamath
Proof Explorer Theorem List (p. 194 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cntzfval 19301* | First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) | ||
| Theorem | cntzval 19302* | Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) | ||
| Theorem | elcntz 19303* | Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) | ||
| Theorem | cntzel 19304* | Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))) | ||
| Theorem | cntzsnval 19305* | Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) | ||
| Theorem | elcntzsn 19306 | Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))) | ||
| Theorem | sscntz 19307* | A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
| Theorem | cntzrcl 19308 | Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) | ||
| Theorem | cntzssv 19309 | The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝑆) ⊆ 𝐵 | ||
| Theorem | cntzi 19310 | Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | elcntr 19311* | Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝑍 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))) | ||
| Theorem | cntrss 19312 | The center is a subset of the base field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (Cntr‘𝑀) ⊆ 𝐵 | ||
| Theorem | cntri 19313 | Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | resscntz 19314 | Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑌‘𝑆) = ((𝑍‘𝑆) ∩ 𝐴)) | ||
| Theorem | cntzsgrpcl 19315* | Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) & ⊢ 𝐶 = (𝑍‘𝑆) ⇒ ⊢ ((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑦(+g‘𝑀)𝑧) ∈ 𝐶) | ||
| Theorem | cntz2ss 19316 | Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) | ||
| Theorem | cntzrec 19317 | Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) | ||
| Theorem | cntziinsn 19318* | Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) | ||
| Theorem | cntzsubm 19319 | Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) | ||
| Theorem | cntzsubg 19320 | Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubGrp‘𝑀)) | ||
| Theorem | cntzidss 19321 | If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) | ||
| Theorem | cntzmhm 19322 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆))) | ||
| Theorem | cntzmhm2 19323 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) | ||
| Theorem | cntrsubgnsg 19324 | A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀)) | ||
| Theorem | cntrnsg 19325 | The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝑀 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝑀)) | ||
| Syntax | coppg 19326 | The opposite group operation. |
| class oppg | ||
| Definition | df-oppg 19327 | Define an opposite group, which is the same as the original group but with addition written the other way around. df-oppr 20295 does the same thing for multiplication. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ oppg = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), tpos (+g‘𝑤)〉)) | ||
| Theorem | oppgval 19328 | Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) | ||
| Theorem | oppgplusfval 19329 | Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ ✚ = tpos + | ||
| Theorem | oppgplus 19330 | Value of the addition operation of an opposite ring. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) | ||
| Theorem | setsplusg 19331 | The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
| ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (+g‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
| Theorem | oppgbas 19332 | Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
| Theorem | oppgtset 19333 | Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐽 = (TopSet‘𝑅) ⇒ ⊢ 𝐽 = (TopSet‘𝑂) | ||
| Theorem | oppgtopn 19334 | Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) ⇒ ⊢ 𝐽 = (TopOpen‘𝑂) | ||
| Theorem | oppgmnd 19335 | The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) | ||
| Theorem | oppgmndb 19336 | Bidirectional form of oppgmnd 19335. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) | ||
| Theorem | oppgid 19337 | Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 0 = (0g‘𝑂) | ||
| Theorem | oppggrp 19338 | The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) | ||
| Theorem | oppggrpb 19339 | Bidirectional form of oppggrp 19338. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) | ||
| Theorem | oppginv 19340 | Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) | ||
| Theorem | invoppggim 19341 | The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂)) | ||
| Theorem | oppggic 19342 | Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐺 ≃𝑔 𝑂) | ||
| Theorem | oppgsubm 19343 | Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) | ||
| Theorem | oppgsubg 19344 | Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) | ||
| Theorem | oppgcntz 19345 | A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) | ||
| Theorem | oppgcntr 19346 | The center of a group is the same as the center of the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) ⇒ ⊢ 𝑍 = (Cntr‘𝑂) | ||
| Theorem | gsumwrev 19347 | A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑂 = (oppg‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))) | ||
According to Wikipedia ("Symmetric group", 09-Mar-2019,
https://en.wikipedia.org/wiki/symmetric_group) "In abstract algebra, the
symmetric group defined over any set is the group whose elements are all the
bijections from the set to itself, and whose group operation is the composition
of functions." and according to Encyclopedia of Mathematics ("Symmetric group",
09-Mar-2019, https://www.encyclopediaofmath.org/index.php/Symmetric_group)
"The group of all permutations (self-bijections) of a set with the operation of
composition (see Permutation group).". In [Rotman] p. 27 "If X is a nonempty
set, a permutation of X is a function a : X -> X that is a one-to-one
correspondence." and "If X is a nonempty set, the symmetric group on X, denoted
SX, is the group whose elements are the permutations of X and whose
binary operation is composition of functions.". Therefore, we define the
symmetric group on a set 𝐴 as the set of one-to-one onto functions
from 𝐴 to itself under function composition, see df-symg 19349. However, the
set is allowed to be empty, see symgbas0 19368. Hint: The symmetric groups
should not be confused with "symmetry groups" which is a different topic in
group theory.
| ||
| Syntax | csymg 19348 | Extend class notation to include the class of symmetric groups. |
| class SymGrp | ||
| Definition | df-symg 19349* | Define the symmetric group on set 𝑥. We represent the group as the set of one-to-one onto functions from 𝑥 to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.) |
| ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | ||
| Theorem | symgval 19350* | The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⇒ ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) | ||
| Theorem | symgbas 19351* | The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.) (Proof shortened by AV, 29-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | ||
| Theorem | elsymgbas2 19352 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
| Theorem | elsymgbas 19353 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
| Theorem | symgbasf1o 19354 | Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | symgbasf 19355 | A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴⟶𝐴) | ||
| Theorem | symgbasmap 19356 | A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (𝐴 ↑m 𝐴)) | ||
| Theorem | symghash 19357 | The symmetric group on 𝑛 objects has cardinality 𝑛!. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴))) | ||
| Theorem | symgbasfi 19358 | The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) | ||
| Theorem | symgfv 19359 | The function value of a permutation. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐴) | ||
| Theorem | symgfvne 19360 | The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))) | ||
| Theorem | symgressbas 19361 | The symmetric group on 𝐴 characterized as structure restriction of the monoid of endofunctions on 𝐴 to its base set. (Contributed by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 = (𝑀 ↾s 𝐵) | ||
| Theorem | symgplusg 19362* | The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Proof shortened by AV, 19-Feb-2024.) (Revised by AV, 29-Mar-2024.) (Proof shortened by AV, 14-Aug-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (𝐴 ↑m 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | ||
| Theorem | symgov 19363 | The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
| Theorem | symgcl 19364 | The group operation of the symmetric group on 𝐴 is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | idresperm 19365 | The identity function restricted to a set is a permutation of this set. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) | ||
| Theorem | symgmov1 19366* | For a permutation of a set, each element of the set replaces an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑛) = 𝑘) | ||
| Theorem | symgmov2 19367* | For a permutation of a set, each element of the set is replaced by an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑛) | ||
| Theorem | symgbas0 19368 | The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019.) |
| ⊢ (Base‘(SymGrp‘∅)) = {∅} | ||
| Theorem | symg1hash 19369 | The symmetric group on a singleton has cardinality 1. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → (♯‘𝐵) = 1) | ||
| Theorem | symg1bas 19370 | The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) | ||
| Theorem | symg2hash 19371 | The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 2) | ||
| Theorem | symg2bas 19372 | The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see Theorem symg1bas 19370. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊) → 𝐵 = {{〈𝐼, 𝐼〉, 〈𝐽, 𝐽〉}, {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}}) | ||
| Theorem | 0symgefmndeq 19373 | The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024.) |
| ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | ||
| Theorem | snsymgefmndeq 19374 | The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) | ||
| Theorem | symgpssefmnd 19375 | For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) | ||
| Theorem | symgvalstruct 19376* | The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (Proof shortened by AV, 6-Nov-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} & ⊢ 𝑀 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
| Theorem | symgsubmefmnd 19377 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
| Theorem | symgtset 19378 | The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | ||
| Theorem | symggrp 19379 | The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) | ||
| Theorem | symgid 19380 | The group identity element of the symmetric group on a set 𝐴. (Contributed by Paul Chapman, 25-Jul-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 1-Apr-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) | ||
| Theorem | symginv 19381 | The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) | ||
| Theorem | symgsubmefmndALT 19382 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18781 and not on injsubmefmnd 18873 and sursubmefmnd 18872. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
| Theorem | galactghm 19383* | The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥 ⊕ 𝑦))) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | lactghmga 19384* | The converse of galactghm 19383. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝐹‘𝑥)‘𝑦)) ⇒ ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) | ||
| Theorem | symgtopn 19385 | The topology of the symmetric group on 𝐴. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺)) | ||
| Theorem | symgga 19386* | The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (𝑓 ∈ 𝐵, 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐹 ∈ (𝐺 GrpAct 𝑋)) | ||
| Theorem | pgrpsubgsymgbi 19387 | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑃 ∈ (SubGrp‘𝐺) ↔ (𝑃 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑃) ∈ Grp))) | ||
| Theorem | pgrpsubgsymg 19388* | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (Base‘𝑃) ⇒ ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) | ||
| Theorem | idressubgsymg 19389 | The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺)) | ||
| Theorem | idrespermg 19390 | The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | ||
| Theorem | cayleylem1 19391* | Lemma for cayley 19393. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | cayleylem2 19392* | Lemma for cayley 19393. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) | ||
| Theorem | cayley 19393* | Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑆 = ran 𝐹 ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) | ||
| Theorem | cayleyth 19394* | Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) ⇒ ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) | ||
| Theorem | symgfix2 19395* | If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) | ||
| Theorem | symgextf 19396* | The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) | ||
| Theorem | symgextfv 19397* | The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) | ||
| Theorem | symgextfve 19398* | The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) | ||
| Theorem | symgextf1lem 19399* | Lemma for symgextf1 19400. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸‘𝑋) ≠ (𝐸‘𝑌))) | ||
| Theorem | symgextf1 19400* | The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1→𝑁) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |