| Metamath
Proof Explorer Theorem List (p. 194 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | galactghm 19301* | The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥 ⊕ 𝑦))) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | lactghmga 19302* | The converse of galactghm 19301. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝐹‘𝑥)‘𝑦)) ⇒ ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) | ||
| Theorem | symgtopn 19303 | The topology of the symmetric group on 𝐴. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺)) | ||
| Theorem | symgga 19304* | The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (𝑓 ∈ 𝐵, 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐹 ∈ (𝐺 GrpAct 𝑋)) | ||
| Theorem | pgrpsubgsymgbi 19305 | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑃 ∈ (SubGrp‘𝐺) ↔ (𝑃 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑃) ∈ Grp))) | ||
| Theorem | pgrpsubgsymg 19306* | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (Base‘𝑃) ⇒ ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) | ||
| Theorem | idressubgsymg 19307 | The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺)) | ||
| Theorem | idrespermg 19308 | The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | ||
| Theorem | cayleylem1 19309* | Lemma for cayley 19311. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | cayleylem2 19310* | Lemma for cayley 19311. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) | ||
| Theorem | cayley 19311* | Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑆 = ran 𝐹 ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) | ||
| Theorem | cayleyth 19312* | Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) ⇒ ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) | ||
| Theorem | symgfix2 19313* | If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) | ||
| Theorem | symgextf 19314* | The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) | ||
| Theorem | symgextfv 19315* | The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) | ||
| Theorem | symgextfve 19316* | The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) | ||
| Theorem | symgextf1lem 19317* | Lemma for symgextf1 19318. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸‘𝑋) ≠ (𝐸‘𝑌))) | ||
| Theorem | symgextf1 19318* | The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1→𝑁) | ||
| Theorem | symgextfo 19319* | The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–onto→𝑁) | ||
| Theorem | symgextf1o 19320* | The extension of a permutation, fixing the additional element, is a bijection. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1-onto→𝑁) | ||
| Theorem | symgextsymg 19321* | The extension of a permutation is an element of the extended symmetric group. (Contributed by AV, 9-Mar-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 ∈ (Base‘(SymGrp‘𝑁))) | ||
| Theorem | symgextres 19322* | The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019.) |
| ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍) | ||
| Theorem | gsumccatsymgsn 19323 | Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊) ∘ 𝑍)) | ||
| Theorem | gsmsymgrfixlem1 19324* | Lemma 1 for gsmsymgrfix 19325. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾)) | ||
| Theorem | gsmsymgrfix 19325* | The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) | ||
| Theorem | fvcosymgeq 19326* | The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) | ||
| Theorem | gsmsymgreqlem1 19327* | Lemma 1 for gsmsymgreq 19329. (Contributed by AV, 26-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝐽) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝐽))) | ||
| Theorem | gsmsymgreqlem2 19328* | Lemma 2 for gsmsymgreq 19329. (Contributed by AV, 26-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) | ||
| Theorem | gsmsymgreq 19329* | Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ 𝐼 ((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) | ||
| Theorem | symgfixelq 19330* | A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝑄 ↔ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾))) | ||
| Theorem | symgfixels 19331* | The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐷 = (𝑁 ∖ {𝐾}) ⇒ ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷)) | ||
| Theorem | symgfixelsi 19332* | The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐷 = (𝑁 ∖ {𝐾}) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐹 ∈ 𝑄) → (𝐹 ↾ 𝐷) ∈ 𝑆) | ||
| Theorem | symgfixf 19333* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄⟶𝑆) | ||
| Theorem | symgfixf1 19334* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄–1-1→𝑆) | ||
| Theorem | symgfixfolem1 19335* | Lemma 1 for symgfixfo 19336. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 ∈ 𝑄) | ||
| Theorem | symgfixfo 19336* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–onto→𝑆) | ||
| Theorem | symgfixf1o 19337* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–1-1-onto→𝑆) | ||
Transpositions are special cases of "cycles" as defined in [Rotman] p. 28: "Let
i1 , i2 , ... , ir be distinct integers
between 1 and n. If α in Sn fixes the other integers and
α(i1) = i2, α(i2) = i3,
..., α(ir-1 ) = ir, α(ir) =
i1, then α is an r-cycle. We also say that α is a
cycle of length r." and in [Rotman] p. 31: "A 2-cycle is also called
transposition.".
| ||
| Syntax | cpmtr 19338 | Syntax for the transposition generator function. |
| class pmTrsp | ||
| Definition | df-pmtr 19339* | Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | ||
| Theorem | f1omvdmvd 19340 | A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋})) | ||
| Theorem | f1omvdcnv 19341 | A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) | ||
| Theorem | mvdco 19342 | Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )) | ||
| Theorem | f1omvdconj 19343 | Conjugation of a permutation takes the image of the moved subclass. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I ))) | ||
| Theorem | f1otrspeq 19344 | A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺) | ||
| Theorem | f1omvdco2 19345 | If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) | ||
| Theorem | f1omvdco3 19346 | If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ∖ I )) | ||
| Theorem | pmtrfval 19347* | The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | ||
| Theorem | pmtrval 19348* | A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) | ||
| Theorem | pmtrfv 19349 | General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) | ||
| Theorem | pmtrprfv 19350 | In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌) | ||
| Theorem | pmtrprfv3 19351 | In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍) | ||
| Theorem | pmtrf 19352 | Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) | ||
| Theorem | pmtrmvd 19353 | A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → dom ((𝑇‘𝑃) ∖ I ) = 𝑃) | ||
| Theorem | pmtrrn 19354 | Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) ∈ 𝑅) | ||
| Theorem | pmtrfrn 19355 | A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 & ⊢ 𝑃 = dom (𝐹 ∖ I ) ⇒ ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))) | ||
| Theorem | pmtrffv 19356 | Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 & ⊢ 𝑃 = dom (𝐹 ∖ I ) ⇒ ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) | ||
| Theorem | pmtrrn2 19357* | For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 (𝑥 ≠ 𝑦 ∧ 𝐹 = (𝑇‘{𝑥, 𝑦}))) | ||
| Theorem | pmtrfinv 19358 | A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) = ( I ↾ 𝐷)) | ||
| Theorem | pmtrfmvdn0 19359 | A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≠ ∅) | ||
| Theorem | pmtrff1o 19360 | A transposition function is a permutation. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷–1-1-onto→𝐷) | ||
| Theorem | pmtrfcnv 19361 | A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 → ◡𝐹 = 𝐹) | ||
| Theorem | pmtrfb 19362 | An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ (𝐹 ∈ 𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷–1-1-onto→𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) | ||
| Theorem | pmtrfconj 19363 | Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝑅 = ran 𝑇 ⇒ ⊢ ((𝐹 ∈ 𝑅 ∧ 𝐺:𝐷–1-1-onto→𝐷) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∈ 𝑅) | ||
| Theorem | symgsssg 19364* | The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺)) | ||
| Theorem | symgfisg 19365* | The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐷 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺)) | ||
| Theorem | symgtrf 19366 | Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝑇 ⊆ 𝐵 | ||
| Theorem | symggen 19367* | The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) ⇒ ⊢ (𝐷 ∈ 𝑉 → (𝐾‘𝑇) = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) | ||
| Theorem | symggen2 19368 | A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) ⇒ ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = 𝐵) | ||
| Theorem | symgtrinv 19369 | To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) | ||
| Theorem | pmtr3ncomlem1 19370 | Lemma 1 for pmtr3ncom 19372. (Contributed by AV, 17-Mar-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) & ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋)) | ||
| Theorem | pmtr3ncomlem2 19371 | Lemma 2 for pmtr3ncom 19372. (Contributed by AV, 17-Mar-2018.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) & ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) & ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) | ||
| Theorem | pmtr3ncom 19372* | Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.) |
| ⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇∃𝑔 ∈ ran 𝑇(𝑔 ∘ 𝑓) ≠ (𝑓 ∘ 𝑔)) | ||
| Theorem | pmtrdifellem1 19373 | Lemma 1 for pmtrdifel 19377. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) | ||
| Theorem | pmtrdifellem2 19374 | Lemma 2 for pmtrdifel 19377. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) | ||
| Theorem | pmtrdifellem3 19375* | Lemma 3 for pmtrdifel 19377. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) | ||
| Theorem | pmtrdifellem4 19376 | Lemma 4 for pmtrdifel 19377. (Contributed by AV, 28-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) ⇒ ⊢ ((𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (𝑆‘𝐾) = 𝐾) | ||
| Theorem | pmtrdifel 19377* | A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) | ||
| Theorem | pmtrdifwrdellem1 19378* | Lemma 1 for pmtrdifwrdel 19382. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → 𝑈 ∈ Word 𝑅) | ||
| Theorem | pmtrdifwrdellem2 19379* | Lemma 2 for pmtrdifwrdel 19382. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) = (♯‘𝑈)) | ||
| Theorem | pmtrdifwrdellem3 19380* | Lemma 3 for pmtrdifwrdel 19382. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | ||
| Theorem | pmtrdifwrdel2lem1 19381* | Lemma 1 for pmtrdifwrdel2 19383. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) & ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) ⇒ ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) | ||
| Theorem | pmtrdifwrdel 19382* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)) | ||
| Theorem | pmtrdifwrdel2 19383* | A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (𝐾 ∈ 𝑁 → ∀𝑤 ∈ Word 𝑇∃𝑢 ∈ Word 𝑅((♯‘𝑤) = (♯‘𝑢) ∧ ∀𝑖 ∈ (0..^(♯‘𝑤))(((𝑢‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})((𝑤‘𝑖)‘𝑥) = ((𝑢‘𝑖)‘𝑥)))) | ||
| Theorem | pmtrprfval 19384* | The transpositions on a pair. (Contributed by AV, 9-Dec-2018.) |
| ⊢ (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) | ||
| Theorem | pmtrprfvalrn 19385 | The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.) |
| ⊢ ran (pmTrsp‘{1, 2}) = {{〈1, 2〉, 〈2, 1〉}} | ||
| Syntax | cpsgn 19386 | Syntax for the sign of a permutation. |
| class pmSgn | ||
| Syntax | cevpm 19387 | Syntax for even permutations. |
| class pmEven | ||
| Definition | df-psgn 19388* | Define a function which takes the value 1 for even permutations and -1 for odd. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) | ||
| Definition | df-evpm 19389 | Define the set of even permutations on a given set. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | ||
| Theorem | psgnunilem1 19390* | Lemma for psgnuni 19396. Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑃 ∈ 𝑇) & ⊢ (𝜑 → 𝑄 ∈ 𝑇) & ⊢ (𝜑 → 𝐴 ∈ dom (𝑃 ∖ I )) ⇒ ⊢ (𝜑 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) | ||
| Theorem | psgnunilem5 19391* | Lemma for psgnuni 19396. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) ⇒ ⊢ (𝜑 → (𝐼 + 1) ∈ (0..^𝐿)) | ||
| Theorem | psgnunilem2 19392* | Lemma for psgnuni 19396. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) & ⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤‘𝑗) ∖ I )))) | ||
| Theorem | psgnunilem3 19393* | Lemma for psgnuni 19396. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (♯‘𝑊) = 𝐿) & ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) & ⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | psgnunilem4 19394 | Lemma for psgnuni 19396. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = 1) | ||
| Theorem | m1expaddsub 19395 | Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) | ||
| Theorem | psgnuni 19396 | If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑇) & ⊢ (𝜑 → 𝑋 ∈ Word 𝑇) & ⊢ (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋)) ⇒ ⊢ (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋))) | ||
| Theorem | psgnfval 19397* | Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑇 = ran (pmTrsp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 = (𝑥 ∈ 𝐹 ↦ (℩𝑠∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) | ||
| Theorem | psgnfn 19398* | Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = {𝑝 ∈ 𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ 𝑁 Fn 𝐹 | ||
| Theorem | psgndmsubg 19399 | The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → dom 𝑁 ∈ (SubGrp‘𝐺)) | ||
| Theorem | psgneldm 19400 | Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑃 ∈ dom 𝑁 ↔ (𝑃 ∈ 𝐵 ∧ dom (𝑃 ∖ I ) ∈ Fin)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |