Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-primroots Structured version   Visualization version   GIF version

Definition df-primroots 41595
Description: A 𝑟-th primitive root is a root of unity such that the exponent divides 𝑟. (Contributed by metakunt, 25-Apr-2025.)
Assertion
Ref Expression
df-primroots PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑎𝑏 ∣ ((𝑘(.g𝑟)𝑎) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙))})
Distinct variable group:   𝑎,𝑏,𝑘,𝑙,𝑟

Detailed syntax breakdown of Definition df-primroots
StepHypRef Expression
1 cprimroots 41594 . 2 class PrimRoots
2 vr . . 3 setvar 𝑟
3 vk . . 3 setvar 𝑘
4 ccmn 19742 . . 3 class CMnd
5 cn0 12510 . . 3 class 0
6 vb . . . 4 setvar 𝑏
72cv 1532 . . . . 5 class 𝑟
8 cbs 17187 . . . . 5 class Base
97, 8cfv 6553 . . . 4 class (Base‘𝑟)
103cv 1532 . . . . . . . 8 class 𝑘
11 va . . . . . . . . 9 setvar 𝑎
1211cv 1532 . . . . . . . 8 class 𝑎
13 cmg 19030 . . . . . . . . 9 class .g
147, 13cfv 6553 . . . . . . . 8 class (.g𝑟)
1510, 12, 14co 7426 . . . . . . 7 class (𝑘(.g𝑟)𝑎)
16 c0g 17428 . . . . . . . 8 class 0g
177, 16cfv 6553 . . . . . . 7 class (0g𝑟)
1815, 17wceq 1533 . . . . . 6 wff (𝑘(.g𝑟)𝑎) = (0g𝑟)
19 vl . . . . . . . . . . 11 setvar 𝑙
2019cv 1532 . . . . . . . . . 10 class 𝑙
2120, 12, 14co 7426 . . . . . . . . 9 class (𝑙(.g𝑟)𝑎)
2221, 17wceq 1533 . . . . . . . 8 wff (𝑙(.g𝑟)𝑎) = (0g𝑟)
23 cdvds 16238 . . . . . . . . 9 class
2410, 20, 23wbr 5152 . . . . . . . 8 wff 𝑘𝑙
2522, 24wi 4 . . . . . . 7 wff ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙)
2625, 19, 5wral 3058 . . . . . 6 wff 𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙)
2718, 26wa 394 . . . . 5 wff ((𝑘(.g𝑟)𝑎) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙))
286cv 1532 . . . . 5 class 𝑏
2927, 11, 28crab 3430 . . . 4 class {𝑎𝑏 ∣ ((𝑘(.g𝑟)𝑎) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙))}
306, 9, 29csb 3894 . . 3 class (Base‘𝑟) / 𝑏{𝑎𝑏 ∣ ((𝑘(.g𝑟)𝑎) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙))}
312, 3, 4, 5, 30cmpo 7428 . 2 class (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑎𝑏 ∣ ((𝑘(.g𝑟)𝑎) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙))})
321, 31wceq 1533 1 wff PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑎𝑏 ∣ ((𝑘(.g𝑟)𝑎) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙))})
Colors of variables: wff setvar class
This definition is referenced by:  isprimroot  41596
  Copyright terms: Public domain W3C validator