Detailed syntax breakdown of Definition df-primroots
| Step | Hyp | Ref
| Expression |
| 1 | | cprimroots 42092 |
. 2
class
PrimRoots |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vk |
. . 3
setvar 𝑘 |
| 4 | | ccmn 19798 |
. . 3
class
CMnd |
| 5 | | cn0 12526 |
. . 3
class
ℕ0 |
| 6 | | vb |
. . . 4
setvar 𝑏 |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑟 |
| 8 | | cbs 17247 |
. . . . 5
class
Base |
| 9 | 7, 8 | cfv 6561 |
. . . 4
class
(Base‘𝑟) |
| 10 | 3 | cv 1539 |
. . . . . . . 8
class 𝑘 |
| 11 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 13 | | cmg 19085 |
. . . . . . . . 9
class
.g |
| 14 | 7, 13 | cfv 6561 |
. . . . . . . 8
class
(.g‘𝑟) |
| 15 | 10, 12, 14 | co 7431 |
. . . . . . 7
class (𝑘(.g‘𝑟)𝑎) |
| 16 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 17 | 7, 16 | cfv 6561 |
. . . . . . 7
class
(0g‘𝑟) |
| 18 | 15, 17 | wceq 1540 |
. . . . . 6
wff (𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) |
| 19 | | vl |
. . . . . . . . . . 11
setvar 𝑙 |
| 20 | 19 | cv 1539 |
. . . . . . . . . 10
class 𝑙 |
| 21 | 20, 12, 14 | co 7431 |
. . . . . . . . 9
class (𝑙(.g‘𝑟)𝑎) |
| 22 | 21, 17 | wceq 1540 |
. . . . . . . 8
wff (𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) |
| 23 | | cdvds 16290 |
. . . . . . . . 9
class
∥ |
| 24 | 10, 20, 23 | wbr 5143 |
. . . . . . . 8
wff 𝑘 ∥ 𝑙 |
| 25 | 22, 24 | wi 4 |
. . . . . . 7
wff ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙) |
| 26 | 25, 19, 5 | wral 3061 |
. . . . . 6
wff
∀𝑙 ∈
ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙) |
| 27 | 18, 26 | wa 395 |
. . . . 5
wff ((𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙)) |
| 28 | 6 | cv 1539 |
. . . . 5
class 𝑏 |
| 29 | 27, 11, 28 | crab 3436 |
. . . 4
class {𝑎 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙))} |
| 30 | 6, 9, 29 | csb 3899 |
. . 3
class
⦋(Base‘𝑟) / 𝑏⦌{𝑎 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙))} |
| 31 | 2, 3, 4, 5, 30 | cmpo 7433 |
. 2
class (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0 ↦
⦋(Base‘𝑟) / 𝑏⦌{𝑎 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙))}) |
| 32 | 1, 31 | wceq 1540 |
1
wff PrimRoots
= (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0
↦ ⦋(Base‘𝑟) / 𝑏⦌{𝑎 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙))}) |