Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprimroot Structured version   Visualization version   GIF version

Theorem isprimroot 41596
Description: The value of a primitive root. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
isprimroot.1 (𝜑𝑅 ∈ CMnd)
isprimroot.2 (𝜑𝐾 ∈ ℕ0)
isprimroot.3 = (.g𝑅)
Assertion
Ref Expression
isprimroot (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
Distinct variable groups:   𝐾,𝑙   𝑀,𝑙   𝑅,𝑙   𝜑,𝑙
Allowed substitution hint:   (𝑙)

Proof of Theorem isprimroot
Dummy variables 𝑏 𝑘 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-primroots 41595 . . . . . 6 PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))})
21a1i 11 . . . . 5 (𝜑 → PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))}))
3 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → 𝑟 = 𝑅)
43fveq2d 6906 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (Base‘𝑟) = (Base‘𝑅))
5 simplrl 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑟 = 𝑅)
65fveq2d 6906 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (.g𝑟) = (.g𝑅))
7 simplrr 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑘 = 𝐾)
8 eqidd 2729 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑥 = 𝑥)
96, 7, 8oveq123d 7447 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑘(.g𝑟)𝑥) = (𝐾(.g𝑅)𝑥))
105fveq2d 6906 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (0g𝑟) = (0g𝑅))
119, 10eqeq12d 2744 . . . . . . . 8 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → ((𝑘(.g𝑟)𝑥) = (0g𝑟) ↔ (𝐾(.g𝑅)𝑥) = (0g𝑅)))
123fveq2d 6906 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (.g𝑟) = (.g𝑅))
1312oveqdr 7454 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑙(.g𝑟)𝑥) = (𝑙(.g𝑅)𝑥))
1413, 10eqeq12d 2744 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → ((𝑙(.g𝑟)𝑥) = (0g𝑟) ↔ (𝑙(.g𝑅)𝑥) = (0g𝑅)))
157breq1d 5162 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑘𝑙𝐾𝑙))
1614, 15imbi12d 343 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙) ↔ ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)))
1716ralbidv 3175 . . . . . . . 8 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)))
1811, 17anbi12d 630 . . . . . . 7 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙)) ↔ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))))
1918rabbidva 3437 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → {𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))} = {𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
204, 19csbeq12dv 3903 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))} = (Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
21 isprimroot.1 . . . . 5 (𝜑𝑅 ∈ CMnd)
22 isprimroot.2 . . . . 5 (𝜑𝐾 ∈ ℕ0)
23 eqid 2728 . . . . . . 7 {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))}
24 fvexd 6917 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ V)
2523, 24rabexd 5339 . . . . . 6 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V)
26 simpr 483 . . . . . . . . 9 ((𝜑𝑏 = (Base‘𝑅)) → 𝑏 = (Base‘𝑅))
2726rabeqdv 3446 . . . . . . . 8 ((𝜑𝑏 = (Base‘𝑅)) → {𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
2824, 27csbied 3932 . . . . . . 7 (𝜑(Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
2928eleq1d 2814 . . . . . 6 (𝜑 → ((Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V ↔ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V))
3025, 29mpbird 256 . . . . 5 (𝜑(Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V)
312, 20, 21, 22, 30ovmpod 7579 . . . 4 (𝜑 → (𝑅 PrimRoots 𝐾) = (Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
3231, 28eqtrd 2768 . . 3 (𝜑 → (𝑅 PrimRoots 𝐾) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
3332eleq2d 2815 . 2 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))}))
34 oveq2 7434 . . . . . . 7 (𝑥 = 𝑀 → (𝐾(.g𝑅)𝑥) = (𝐾(.g𝑅)𝑀))
3534eqeq1d 2730 . . . . . 6 (𝑥 = 𝑀 → ((𝐾(.g𝑅)𝑥) = (0g𝑅) ↔ (𝐾(.g𝑅)𝑀) = (0g𝑅)))
36 oveq2 7434 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑙(.g𝑅)𝑥) = (𝑙(.g𝑅)𝑀))
3736eqeq1d 2730 . . . . . . . 8 (𝑥 = 𝑀 → ((𝑙(.g𝑅)𝑥) = (0g𝑅) ↔ (𝑙(.g𝑅)𝑀) = (0g𝑅)))
3837imbi1d 340 . . . . . . 7 (𝑥 = 𝑀 → (((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
3938ralbidv 3175 . . . . . 6 (𝑥 = 𝑀 → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
4035, 39anbi12d 630 . . . . 5 (𝑥 = 𝑀 → (((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)) ↔ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4140elrab 3684 . . . 4 (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4241a1i 11 . . 3 (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))))
43 3anass 1092 . . . . . 6 ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4443bicomi 223 . . . . 5 ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
4544a1i 11 . . . 4 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
46 biidd 261 . . . . 5 (𝜑 → (𝑀 ∈ (Base‘𝑅) ↔ 𝑀 ∈ (Base‘𝑅)))
47 isprimroot.3 . . . . . . . . 9 = (.g𝑅)
4847eqcomi 2737 . . . . . . . 8 (.g𝑅) =
4948a1i 11 . . . . . . 7 (𝜑 → (.g𝑅) = )
5049oveqd 7443 . . . . . 6 (𝜑 → (𝐾(.g𝑅)𝑀) = (𝐾 𝑀))
5150eqeq1d 2730 . . . . 5 (𝜑 → ((𝐾(.g𝑅)𝑀) = (0g𝑅) ↔ (𝐾 𝑀) = (0g𝑅)))
5249oveqd 7443 . . . . . . . 8 (𝜑 → (𝑙(.g𝑅)𝑀) = (𝑙 𝑀))
5352eqeq1d 2730 . . . . . . 7 (𝜑 → ((𝑙(.g𝑅)𝑀) = (0g𝑅) ↔ (𝑙 𝑀) = (0g𝑅)))
5453imbi1d 340 . . . . . 6 (𝜑 → (((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙)))
5554ralbidv 3175 . . . . 5 (𝜑 → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙)))
5646, 51, 553anbi123d 1432 . . . 4 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5745, 56bitrd 278 . . 3 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5842, 57bitrd 278 . 2 (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5933, 58bitrd 278 1 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  {crab 3430  Vcvv 3473  csb 3894   class class class wbr 5152  cfv 6553  (class class class)co 7426  cmpo 7428  0cn0 12510  cdvds 16238  Basecbs 17187  0gc0g 17428  .gcmg 19030  CMndccmn 19742   PrimRoots cprimroots 41594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-primroots 41595
This theorem is referenced by:  primrootsunit1  41599  primrootscoprmpow  41602  primrootscoprbij  41605  primrootlekpowne0  41608  primrootspoweq0  41609  aks6d1c1p2  41612  aks6d1c1p3  41613  aks6d1c1p4  41614  aks6d1c1p5  41615  aks6d1c1p7  41616  aks6d1c1p6  41617  aks6d1c1p8  41618  aks6d1c2lem3  41629  aks6d1c2lem4  41630  aks6d1c6lem2  41675  aks6d1c6lem3  41676  aks6d1c6lem4  41677  aks6d1c6isolem1  41678  aks6d1c6isolem2  41679  aks6d1c6lem5  41681
  Copyright terms: Public domain W3C validator