Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprimroot Structured version   Visualization version   GIF version

Theorem isprimroot 42066
Description: The value of a primitive root. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
isprimroot.1 (𝜑𝑅 ∈ CMnd)
isprimroot.2 (𝜑𝐾 ∈ ℕ0)
isprimroot.3 = (.g𝑅)
Assertion
Ref Expression
isprimroot (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
Distinct variable groups:   𝐾,𝑙   𝑀,𝑙   𝑅,𝑙   𝜑,𝑙
Allowed substitution hint:   (𝑙)

Proof of Theorem isprimroot
Dummy variables 𝑏 𝑘 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-primroots 42065 . . . . . 6 PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))})
21a1i 11 . . . . 5 (𝜑 → PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))}))
3 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → 𝑟 = 𝑅)
43fveq2d 6830 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (Base‘𝑟) = (Base‘𝑅))
5 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑟 = 𝑅)
65fveq2d 6830 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (.g𝑟) = (.g𝑅))
7 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑘 = 𝐾)
8 eqidd 2730 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑥 = 𝑥)
96, 7, 8oveq123d 7374 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑘(.g𝑟)𝑥) = (𝐾(.g𝑅)𝑥))
105fveq2d 6830 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (0g𝑟) = (0g𝑅))
119, 10eqeq12d 2745 . . . . . . . 8 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → ((𝑘(.g𝑟)𝑥) = (0g𝑟) ↔ (𝐾(.g𝑅)𝑥) = (0g𝑅)))
123fveq2d 6830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (.g𝑟) = (.g𝑅))
1312oveqdr 7381 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑙(.g𝑟)𝑥) = (𝑙(.g𝑅)𝑥))
1413, 10eqeq12d 2745 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → ((𝑙(.g𝑟)𝑥) = (0g𝑟) ↔ (𝑙(.g𝑅)𝑥) = (0g𝑅)))
157breq1d 5105 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑘𝑙𝐾𝑙))
1614, 15imbi12d 344 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙) ↔ ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)))
1716ralbidv 3152 . . . . . . . 8 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)))
1811, 17anbi12d 632 . . . . . . 7 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙)) ↔ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))))
1918rabbidva 3403 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → {𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))} = {𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
204, 19csbeq12dv 3862 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))} = (Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
21 isprimroot.1 . . . . 5 (𝜑𝑅 ∈ CMnd)
22 isprimroot.2 . . . . 5 (𝜑𝐾 ∈ ℕ0)
23 eqid 2729 . . . . . . 7 {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))}
24 fvexd 6841 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ V)
2523, 24rabexd 5282 . . . . . 6 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V)
26 simpr 484 . . . . . . . . 9 ((𝜑𝑏 = (Base‘𝑅)) → 𝑏 = (Base‘𝑅))
2726rabeqdv 3412 . . . . . . . 8 ((𝜑𝑏 = (Base‘𝑅)) → {𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
2824, 27csbied 3889 . . . . . . 7 (𝜑(Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
2928eleq1d 2813 . . . . . 6 (𝜑 → ((Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V ↔ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V))
3025, 29mpbird 257 . . . . 5 (𝜑(Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V)
312, 20, 21, 22, 30ovmpod 7505 . . . 4 (𝜑 → (𝑅 PrimRoots 𝐾) = (Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
3231, 28eqtrd 2764 . . 3 (𝜑 → (𝑅 PrimRoots 𝐾) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
3332eleq2d 2814 . 2 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))}))
34 oveq2 7361 . . . . . . 7 (𝑥 = 𝑀 → (𝐾(.g𝑅)𝑥) = (𝐾(.g𝑅)𝑀))
3534eqeq1d 2731 . . . . . 6 (𝑥 = 𝑀 → ((𝐾(.g𝑅)𝑥) = (0g𝑅) ↔ (𝐾(.g𝑅)𝑀) = (0g𝑅)))
36 oveq2 7361 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑙(.g𝑅)𝑥) = (𝑙(.g𝑅)𝑀))
3736eqeq1d 2731 . . . . . . . 8 (𝑥 = 𝑀 → ((𝑙(.g𝑅)𝑥) = (0g𝑅) ↔ (𝑙(.g𝑅)𝑀) = (0g𝑅)))
3837imbi1d 341 . . . . . . 7 (𝑥 = 𝑀 → (((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
3938ralbidv 3152 . . . . . 6 (𝑥 = 𝑀 → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
4035, 39anbi12d 632 . . . . 5 (𝑥 = 𝑀 → (((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)) ↔ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4140elrab 3650 . . . 4 (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4241a1i 11 . . 3 (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))))
43 3anass 1094 . . . . . 6 ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4443bicomi 224 . . . . 5 ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
4544a1i 11 . . . 4 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
46 biidd 262 . . . . 5 (𝜑 → (𝑀 ∈ (Base‘𝑅) ↔ 𝑀 ∈ (Base‘𝑅)))
47 isprimroot.3 . . . . . . . . 9 = (.g𝑅)
4847eqcomi 2738 . . . . . . . 8 (.g𝑅) =
4948a1i 11 . . . . . . 7 (𝜑 → (.g𝑅) = )
5049oveqd 7370 . . . . . 6 (𝜑 → (𝐾(.g𝑅)𝑀) = (𝐾 𝑀))
5150eqeq1d 2731 . . . . 5 (𝜑 → ((𝐾(.g𝑅)𝑀) = (0g𝑅) ↔ (𝐾 𝑀) = (0g𝑅)))
5249oveqd 7370 . . . . . . . 8 (𝜑 → (𝑙(.g𝑅)𝑀) = (𝑙 𝑀))
5352eqeq1d 2731 . . . . . . 7 (𝜑 → ((𝑙(.g𝑅)𝑀) = (0g𝑅) ↔ (𝑙 𝑀) = (0g𝑅)))
5453imbi1d 341 . . . . . 6 (𝜑 → (((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙)))
5554ralbidv 3152 . . . . 5 (𝜑 → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙)))
5646, 51, 553anbi123d 1438 . . . 4 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5745, 56bitrd 279 . . 3 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5842, 57bitrd 279 . 2 (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5933, 58bitrd 279 1 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  csb 3853   class class class wbr 5095  cfv 6486  (class class class)co 7353  cmpo 7355  0cn0 12402  cdvds 16181  Basecbs 17138  0gc0g 17361  .gcmg 18964  CMndccmn 19677   PrimRoots cprimroots 42064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-primroots 42065
This theorem is referenced by:  isprimroot2  42067  primrootsunit1  42070  primrootscoprmpow  42072  primrootscoprbij  42075  primrootlekpowne0  42078  primrootspoweq0  42079  aks6d1c1p2  42082  aks6d1c1p3  42083  aks6d1c1p4  42084  aks6d1c1p5  42085  aks6d1c1p7  42086  aks6d1c1p6  42087  aks6d1c1p8  42088  aks6d1c2lem3  42099  aks6d1c2lem4  42100  aks6d1c6lem2  42144  aks6d1c6lem3  42145  aks6d1c6lem4  42146  aks6d1c6isolem1  42147  aks6d1c6isolem2  42148  aks6d1c6lem5  42150  aks5lem2  42160  aks5lem3a  42162
  Copyright terms: Public domain W3C validator