Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprimroot Structured version   Visualization version   GIF version

Theorem isprimroot 42052
Description: The value of a primitive root. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
isprimroot.1 (𝜑𝑅 ∈ CMnd)
isprimroot.2 (𝜑𝐾 ∈ ℕ0)
isprimroot.3 = (.g𝑅)
Assertion
Ref Expression
isprimroot (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
Distinct variable groups:   𝐾,𝑙   𝑀,𝑙   𝑅,𝑙   𝜑,𝑙
Allowed substitution hint:   (𝑙)

Proof of Theorem isprimroot
Dummy variables 𝑏 𝑘 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-primroots 42051 . . . . . 6 PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))})
21a1i 11 . . . . 5 (𝜑 → PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))}))
3 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → 𝑟 = 𝑅)
43fveq2d 6879 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (Base‘𝑟) = (Base‘𝑅))
5 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑟 = 𝑅)
65fveq2d 6879 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (.g𝑟) = (.g𝑅))
7 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑘 = 𝐾)
8 eqidd 2736 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → 𝑥 = 𝑥)
96, 7, 8oveq123d 7424 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑘(.g𝑟)𝑥) = (𝐾(.g𝑅)𝑥))
105fveq2d 6879 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (0g𝑟) = (0g𝑅))
119, 10eqeq12d 2751 . . . . . . . 8 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → ((𝑘(.g𝑟)𝑥) = (0g𝑟) ↔ (𝐾(.g𝑅)𝑥) = (0g𝑅)))
123fveq2d 6879 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (.g𝑟) = (.g𝑅))
1312oveqdr 7431 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑙(.g𝑟)𝑥) = (𝑙(.g𝑅)𝑥))
1413, 10eqeq12d 2751 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → ((𝑙(.g𝑟)𝑥) = (0g𝑟) ↔ (𝑙(.g𝑅)𝑥) = (0g𝑅)))
157breq1d 5129 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (𝑘𝑙𝐾𝑙))
1614, 15imbi12d 344 . . . . . . . . 9 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙) ↔ ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)))
1716ralbidv 3163 . . . . . . . 8 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)))
1811, 17anbi12d 632 . . . . . . 7 (((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) ∧ 𝑥𝑏) → (((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙)) ↔ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))))
1918rabbidva 3422 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → {𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))} = {𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
204, 19csbeq12dv 3883 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑘 = 𝐾)) → (Base‘𝑟) / 𝑏{𝑥𝑏 ∣ ((𝑘(.g𝑟)𝑥) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑥) = (0g𝑟) → 𝑘𝑙))} = (Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
21 isprimroot.1 . . . . 5 (𝜑𝑅 ∈ CMnd)
22 isprimroot.2 . . . . 5 (𝜑𝐾 ∈ ℕ0)
23 eqid 2735 . . . . . . 7 {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))}
24 fvexd 6890 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ V)
2523, 24rabexd 5310 . . . . . 6 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V)
26 simpr 484 . . . . . . . . 9 ((𝜑𝑏 = (Base‘𝑅)) → 𝑏 = (Base‘𝑅))
2726rabeqdv 3431 . . . . . . . 8 ((𝜑𝑏 = (Base‘𝑅)) → {𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
2824, 27csbied 3910 . . . . . . 7 (𝜑(Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
2928eleq1d 2819 . . . . . 6 (𝜑 → ((Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V ↔ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V))
3025, 29mpbird 257 . . . . 5 (𝜑(Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ∈ V)
312, 20, 21, 22, 30ovmpod 7557 . . . 4 (𝜑 → (𝑅 PrimRoots 𝐾) = (Base‘𝑅) / 𝑏{𝑥𝑏 ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
3231, 28eqtrd 2770 . . 3 (𝜑 → (𝑅 PrimRoots 𝐾) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))})
3332eleq2d 2820 . 2 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))}))
34 oveq2 7411 . . . . . . 7 (𝑥 = 𝑀 → (𝐾(.g𝑅)𝑥) = (𝐾(.g𝑅)𝑀))
3534eqeq1d 2737 . . . . . 6 (𝑥 = 𝑀 → ((𝐾(.g𝑅)𝑥) = (0g𝑅) ↔ (𝐾(.g𝑅)𝑀) = (0g𝑅)))
36 oveq2 7411 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑙(.g𝑅)𝑥) = (𝑙(.g𝑅)𝑀))
3736eqeq1d 2737 . . . . . . . 8 (𝑥 = 𝑀 → ((𝑙(.g𝑅)𝑥) = (0g𝑅) ↔ (𝑙(.g𝑅)𝑀) = (0g𝑅)))
3837imbi1d 341 . . . . . . 7 (𝑥 = 𝑀 → (((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
3938ralbidv 3163 . . . . . 6 (𝑥 = 𝑀 → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
4035, 39anbi12d 632 . . . . 5 (𝑥 = 𝑀 → (((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙)) ↔ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4140elrab 3671 . . . 4 (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4241a1i 11 . . 3 (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))))
43 3anass 1094 . . . . . 6 ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
4443bicomi 224 . . . . 5 ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
4544a1i 11 . . . 4 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
46 biidd 262 . . . . 5 (𝜑 → (𝑀 ∈ (Base‘𝑅) ↔ 𝑀 ∈ (Base‘𝑅)))
47 isprimroot.3 . . . . . . . . 9 = (.g𝑅)
4847eqcomi 2744 . . . . . . . 8 (.g𝑅) =
4948a1i 11 . . . . . . 7 (𝜑 → (.g𝑅) = )
5049oveqd 7420 . . . . . 6 (𝜑 → (𝐾(.g𝑅)𝑀) = (𝐾 𝑀))
5150eqeq1d 2737 . . . . 5 (𝜑 → ((𝐾(.g𝑅)𝑀) = (0g𝑅) ↔ (𝐾 𝑀) = (0g𝑅)))
5249oveqd 7420 . . . . . . . 8 (𝜑 → (𝑙(.g𝑅)𝑀) = (𝑙 𝑀))
5352eqeq1d 2737 . . . . . . 7 (𝜑 → ((𝑙(.g𝑅)𝑀) = (0g𝑅) ↔ (𝑙 𝑀) = (0g𝑅)))
5453imbi1d 341 . . . . . 6 (𝜑 → (((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙)))
5554ralbidv 3163 . . . . 5 (𝜑 → (∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙)))
5646, 51, 553anbi123d 1438 . . . 4 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5745, 56bitrd 279 . . 3 (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5842, 57bitrd 279 . 2 (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g𝑅)𝑥) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑥) = (0g𝑅) → 𝐾𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
5933, 58bitrd 279 1 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 𝑀) = (0g𝑅) → 𝐾𝑙))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  csb 3874   class class class wbr 5119  cfv 6530  (class class class)co 7403  cmpo 7405  0cn0 12499  cdvds 16270  Basecbs 17226  0gc0g 17451  .gcmg 19048  CMndccmn 19759   PrimRoots cprimroots 42050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-primroots 42051
This theorem is referenced by:  isprimroot2  42053  primrootsunit1  42056  primrootscoprmpow  42058  primrootscoprbij  42061  primrootlekpowne0  42064  primrootspoweq0  42065  aks6d1c1p2  42068  aks6d1c1p3  42069  aks6d1c1p4  42070  aks6d1c1p5  42071  aks6d1c1p7  42072  aks6d1c1p6  42073  aks6d1c1p8  42074  aks6d1c2lem3  42085  aks6d1c2lem4  42086  aks6d1c6lem2  42130  aks6d1c6lem3  42131  aks6d1c6lem4  42132  aks6d1c6isolem1  42133  aks6d1c6isolem2  42134  aks6d1c6lem5  42136  aks5lem2  42146  aks5lem3a  42148
  Copyright terms: Public domain W3C validator