Step | Hyp | Ref
| Expression |
1 | | df-primroots 41595 |
. . . . . 6
⊢
PrimRoots = (𝑟 ∈ CMnd,
𝑘 ∈
ℕ0 ↦ ⦋(Base‘𝑟) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑥) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) → 𝑘 ∥ 𝑙))}) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0 ↦
⦋(Base‘𝑟) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑥) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) → 𝑘 ∥ 𝑙))})) |
3 | | simprl 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) → 𝑟 = 𝑅) |
4 | 3 | fveq2d 6906 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) → (Base‘𝑟) = (Base‘𝑅)) |
5 | | simplrl 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → 𝑟 = 𝑅) |
6 | 5 | fveq2d 6906 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (.g‘𝑟) = (.g‘𝑅)) |
7 | | simplrr 776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → 𝑘 = 𝐾) |
8 | | eqidd 2729 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → 𝑥 = 𝑥) |
9 | 6, 7, 8 | oveq123d 7447 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (𝑘(.g‘𝑟)𝑥) = (𝐾(.g‘𝑅)𝑥)) |
10 | 5 | fveq2d 6906 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (0g‘𝑟) = (0g‘𝑅)) |
11 | 9, 10 | eqeq12d 2744 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → ((𝑘(.g‘𝑟)𝑥) = (0g‘𝑟) ↔ (𝐾(.g‘𝑅)𝑥) = (0g‘𝑅))) |
12 | 3 | fveq2d 6906 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) → (.g‘𝑟) = (.g‘𝑅)) |
13 | 12 | oveqdr 7454 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (𝑙(.g‘𝑟)𝑥) = (𝑙(.g‘𝑅)𝑥)) |
14 | 13, 10 | eqeq12d 2744 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → ((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) ↔ (𝑙(.g‘𝑅)𝑥) = (0g‘𝑅))) |
15 | 7 | breq1d 5162 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (𝑘 ∥ 𝑙 ↔ 𝐾 ∥ 𝑙)) |
16 | 14, 15 | imbi12d 343 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) → 𝑘 ∥ 𝑙) ↔ ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
17 | 16 | ralbidv 3175 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) → 𝑘 ∥ 𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
18 | 11, 17 | anbi12d 630 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) ∧ 𝑥 ∈ 𝑏) → (((𝑘(.g‘𝑟)𝑥) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) → 𝑘 ∥ 𝑙)) ↔ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
19 | 18 | rabbidva 3437 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) → {𝑥 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑥) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) → 𝑘 ∥ 𝑙))} = {𝑥 ∈ 𝑏 ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))}) |
20 | 4, 19 | csbeq12dv 3903 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑘 = 𝐾)) → ⦋(Base‘𝑟) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑥) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑥) = (0g‘𝑟) → 𝑘 ∥ 𝑙))} = ⦋(Base‘𝑅) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))}) |
21 | | isprimroot.1 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
22 | | isprimroot.2 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
23 | | eqid 2728 |
. . . . . . 7
⊢ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} |
24 | | fvexd 6917 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
25 | 23, 24 | rabexd 5339 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} ∈ V) |
26 | | simpr 483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 = (Base‘𝑅)) → 𝑏 = (Base‘𝑅)) |
27 | 26 | rabeqdv 3446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 = (Base‘𝑅)) → {𝑥 ∈ 𝑏 ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))}) |
28 | 24, 27 | csbied 3932 |
. . . . . . 7
⊢ (𝜑 →
⦋(Base‘𝑅) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))}) |
29 | 28 | eleq1d 2814 |
. . . . . 6
⊢ (𝜑 →
(⦋(Base‘𝑅) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} ∈ V ↔ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} ∈ V)) |
30 | 25, 29 | mpbird 256 |
. . . . 5
⊢ (𝜑 →
⦋(Base‘𝑅) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} ∈ V) |
31 | 2, 20, 21, 22, 30 | ovmpod 7579 |
. . . 4
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ⦋(Base‘𝑅) / 𝑏⦌{𝑥 ∈ 𝑏 ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))}) |
32 | 31, 28 | eqtrd 2768 |
. . 3
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))}) |
33 | 32 | eleq2d 2815 |
. 2
⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ 𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))})) |
34 | | oveq2 7434 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐾(.g‘𝑅)𝑥) = (𝐾(.g‘𝑅)𝑀)) |
35 | 34 | eqeq1d 2730 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ↔ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅))) |
36 | | oveq2 7434 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (𝑙(.g‘𝑅)𝑥) = (𝑙(.g‘𝑅)𝑀)) |
37 | 36 | eqeq1d 2730 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) ↔ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅))) |
38 | 37 | imbi1d 340 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
39 | 38 | ralbidv 3175 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
40 | 35, 39 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = 𝑀 → (((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) ↔ ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
41 | 40 | elrab 3684 |
. . . 4
⊢ (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
42 | 41 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))))) |
43 | | 3anass 1092 |
. . . . . 6
⊢ ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
44 | 43 | bicomi 223 |
. . . . 5
⊢ ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
45 | 44 | a1i 11 |
. . . 4
⊢ (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
46 | | biidd 261 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ↔ 𝑀 ∈ (Base‘𝑅))) |
47 | | isprimroot.3 |
. . . . . . . . 9
⊢ ↑ =
(.g‘𝑅) |
48 | 47 | eqcomi 2737 |
. . . . . . . 8
⊢
(.g‘𝑅) = ↑ |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (.g‘𝑅) = ↑ ) |
50 | 49 | oveqd 7443 |
. . . . . 6
⊢ (𝜑 → (𝐾(.g‘𝑅)𝑀) = (𝐾 ↑ 𝑀)) |
51 | 50 | eqeq1d 2730 |
. . . . 5
⊢ (𝜑 → ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ (𝐾 ↑ 𝑀) = (0g‘𝑅))) |
52 | 49 | oveqd 7443 |
. . . . . . . 8
⊢ (𝜑 → (𝑙(.g‘𝑅)𝑀) = (𝑙 ↑ 𝑀)) |
53 | 52 | eqeq1d 2730 |
. . . . . . 7
⊢ (𝜑 → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ (𝑙 ↑ 𝑀) = (0g‘𝑅))) |
54 | 53 | imbi1d 340 |
. . . . . 6
⊢ (𝜑 → (((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ((𝑙 ↑ 𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
55 | 54 | ralbidv 3175 |
. . . . 5
⊢ (𝜑 → (∀𝑙 ∈ ℕ0
((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
56 | 46, 51, 55 | 3anbi123d 1432 |
. . . 4
⊢ (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 ↑ 𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
57 | 45, 56 | bitrd 278 |
. . 3
⊢ (𝜑 → ((𝑀 ∈ (Base‘𝑅) ∧ ((𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 ↑ 𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
58 | 42, 57 | bitrd 278 |
. 2
⊢ (𝜑 → (𝑀 ∈ {𝑥 ∈ (Base‘𝑅) ∣ ((𝐾(.g‘𝑅)𝑥) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑥) = (0g‘𝑅) → 𝐾 ∥ 𝑙))} ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 ↑ 𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
59 | 33, 58 | bitrd 278 |
1
⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾 ↑ 𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |