| Metamath
Proof Explorer Theorem List (p. 421 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hgmapval0 42001 | Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐺‘ 0 ) = 0 ) | ||
| Theorem | hgmapval1 42002 | Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐺‘ 1 ) = 1 ) | ||
| Theorem | hgmapadd 42003 | Part 15 of [Baer] p. 50 line 13. (Contributed by NM, 6-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) + (𝐺‘𝑌))) | ||
| Theorem | hgmapmul 42004 | Part 15 of [Baer] p. 50 line 16. The multiplication is reversed after converting to the dual space scalar to the vector space scalar. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑌) · (𝐺‘𝑋))) | ||
| Theorem | hgmaprnlem1N 42005 | Lemma for hgmaprnN 42010. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ (𝜑 → 𝑘 ∈ 𝐵) & ⊢ (𝜑 → 𝑠 = (𝑘 · 𝑡)) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnlem2N 42006 | Lemma for hgmaprnN 42010. Part 15 of [Baer] p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero 𝑧 is taken care of automatically. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LSpan‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑠}) ⊆ (𝑁‘{𝑡})) | ||
| Theorem | hgmaprnlem3N 42007* | Lemma for hgmaprnN 42010. Eliminate 𝑘. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LSpan‘𝐶) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnlem4N 42008* | Lemma for hgmaprnN 42010. Eliminate 𝑠. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnlem5N 42009 | Lemma for hgmaprnN 42010. Eliminate 𝑡. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnN 42010 | Part of proof of part 16 in [Baer] p. 50 line 23, Fs=G, except that we use the original vector space scalars for the range. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ran 𝐺 = 𝐵) | ||
| Theorem | hgmap11 42011 | The scalar sigma map is one-to-one. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐺‘𝑋) = (𝐺‘𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | hgmapf1oN 42012 | The scalar sigma map is a one-to-one onto function. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐵) | ||
| Theorem | hgmapeq0 42013 | The scalar sigma map is zero iff its argument is zero. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐺‘𝑋) = 0 ↔ 𝑋 = 0 )) | ||
| Theorem | hdmapipcl 42014 | The inner product (Hermitian form) (𝑋, 𝑌) will be defined as ((𝑆‘𝑌)‘𝑋). Show closure. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑌)‘𝑋) ∈ 𝐵) | ||
| Theorem | hdmapln1 42015 | Linearity property that will be used for inner product. TODO: try to combine hypotheses in hdmap*ln* series. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘((𝐴 · 𝑋) + 𝑌)) = ((𝐴 × ((𝑆‘𝑍)‘𝑋)) ⨣ ((𝑆‘𝑍)‘𝑌))) | ||
| Theorem | hdmaplna1 42016 | Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘(𝑋 + 𝑌)) = (((𝑆‘𝑍)‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑌))) | ||
| Theorem | hdmaplns1 42017 | Subtraction property of first (inner product) argument. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑁 = (-g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘(𝑋 − 𝑌)) = (((𝑆‘𝑍)‘𝑋)𝑁((𝑆‘𝑍)‘𝑌))) | ||
| Theorem | hdmaplnm1 42018 | Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘𝑌)‘(𝐴 · 𝑋)) = (𝐴 × ((𝑆‘𝑌)‘𝑋))) | ||
| Theorem | hdmaplna2 42019 | Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆‘𝑌)‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑋))) | ||
| Theorem | hdmapglnm2 42020 | g-linear property of second (inner product) argument. Line 19 in [Holland95] p. 14. (Contributed by NM, 10-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘(𝐴 · 𝑌))‘𝑋) = (((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴))) | ||
| Theorem | hdmapgln2 42021 | g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘((𝐴 · 𝑌) + 𝑍))‘𝑋) = ((((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴)) ⨣ ((𝑆‘𝑍)‘𝑋))) | ||
| Theorem | hdmaplkr 42022 | Kernel of the vector to dual map. Line 16 in [Holland95] p. 14. TODO: eliminate 𝐹 hypothesis. (Contributed by NM, 9-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝑌 = (LKer‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑌‘(𝑆‘𝑋)) = (𝑂‘{𝑋})) | ||
| Theorem | hdmapellkr 42023 | Membership in the kernel (as shown by hdmaplkr 42022) of the vector to dual map. Line 17 in [Holland95] p. 14. (Contributed by NM, 16-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ 𝑌 ∈ (𝑂‘{𝑋}))) | ||
| Theorem | hdmapip0 42024 | Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑋) = 𝑍 ↔ 𝑋 = 0 )) | ||
| Theorem | hdmapip1 42025 | Construct a proportional vector 𝑌 whose inner product with the original 𝑋 equals one. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝑌 = ((𝑁‘((𝑆‘𝑋)‘𝑋)) · 𝑋) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 1 ) | ||
| Theorem | hdmapip0com 42026 | Commutation property of Baer's sigma map (Holland's A map). Line 20 of [Holland95] p. 14. Also part of Lemma 1 of [Baer] p. 110 line 7. (Contributed by NM, 9-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ ((𝑆‘𝑌)‘𝑋) = 0 )) | ||
| Theorem | hdmapinvlem1 42027 | Line 27 in [Baer] p. 110. We use 𝐶 for Baer's u. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41945. Our ((𝑆‘𝐸)‘𝐶) means the inner product 〈𝐶, 𝐸〉 i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) ⇒ ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐶) = 0 ) | ||
| Theorem | hdmapinvlem2 42028 | Line 28 in [Baer] p. 110, 0 = f(w,u). (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) ⇒ ⊢ (𝜑 → ((𝑆‘𝐶)‘𝐸) = 0 ) | ||
| Theorem | hdmapinvlem3 42029 | Line 30 in [Baer] p. 110, f(sw + u, tw - v) = 0. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) & ⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) = ((𝑆‘𝐷)‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑆‘((𝐽 · 𝐸) − 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ) | ||
| Theorem | hdmapinvlem4 42030 | Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41945. Our ((𝑆‘𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) & ⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) = ((𝑆‘𝐷)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐽 × (𝐺‘𝐼)) = ((𝑆‘𝐶)‘𝐷)) | ||
| Theorem | hdmapglem5 42031 | Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) | ||
| Theorem | hgmapvvlem1 42032 | Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hgmapvvlem2 42033 | Lemma for hgmapvv 42035. Eliminate 𝑌 (Baer's s). (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hgmapvvlem3 42034 | Lemma for hgmapvv 42035. Eliminate ((𝑆‘𝐷)‘𝐶) = 1 (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hgmapvv 42035 | Value of a double involution. Part 1.2 of [Baer] p. 110 line 37. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hdmapglem7a 42036* | Lemma for hdmapg 42039. (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) | ||
| Theorem | hdmapglem7b 42037 | Lemma for hdmapg 42039. (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ✚ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝑦 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝑚 ∈ 𝐵) & ⊢ (𝜑 → 𝑛 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) | ||
| Theorem | hdmapglem7 42038 | Lemma for hdmapg 42039. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our 𝐸, (𝑂‘{𝐸}), 𝑋, 𝑌, 𝑘, 𝑢, 𝑙, and 𝑣 correspond respectively to Baer's w, H, x, y, x', x'', y', and y'', and our ((𝑆‘𝑌)‘𝑋) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ✚ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) | ||
| Theorem | hdmapg 42039 | Apply the scalar sigma function (involution) 𝐺 to an inner product reverses the arguments. The inner product of 𝑋 and 𝑌 is represented by ((𝑆‘𝑌)‘𝑋). Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) | ||
| Theorem | hdmapoc 42040* | Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in [Holland95] p. 14. (Contributed by NM, 17-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 }) | ||
| Syntax | chlh 42041 | Extend class notation with the final constructed Hilbert space. |
| class HLHil | ||
| Definition | df-hlhil 42042* | Define our final Hilbert space constructed from a Hilbert lattice. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝑢)〉, 〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) | ||
| Theorem | hlhilset 42043* | The final Hilbert space constructed from a Hilbert lattice 𝐾 and an arbitrary hyperplane 𝑊 in 𝐾. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐿 = ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉})) | ||
| Theorem | hlhilsca 42044 | The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) | ||
| Theorem | hlhilbase 42045 | The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑀 = (Base‘𝐿) ⇒ ⊢ (𝜑 → 𝑀 = (Base‘𝑈)) | ||
| Theorem | hlhilplus 42046 | The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐿) ⇒ ⊢ (𝜑 → + = (+g‘𝑈)) | ||
| Theorem | hlhilslem 42047 | Lemma for hlhilsbase 42048 etc. (Contributed by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = Slot (𝐹‘ndx) & ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) & ⊢ 𝐶 = (𝐹‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) | ||
| Theorem | hlhilsbase 42048 | The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (Base‘𝑅)) | ||
| Theorem | hlhilsplus 42049 | Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ + = (+g‘𝐸) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
| Theorem | hlhilsmul 42050 | Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ · = (.r‘𝐸) ⇒ ⊢ (𝜑 → · = (.r‘𝑅)) | ||
| Theorem | hlhilsbase2 42051 | The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (Base‘𝑅)) | ||
| Theorem | hlhilsplus2 42052 | Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
| Theorem | hlhilsmul2 42053 | Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ · = (.r‘𝑆) ⇒ ⊢ (𝜑 → · = (.r‘𝑅)) | ||
| Theorem | hlhils0 42054 | The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝜑 → 0 = (0g‘𝑅)) | ||
| Theorem | hlhils1N 42055 | The scalar ring unity for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ (𝜑 → 1 = (1r‘𝑅)) | ||
| Theorem | hlhilvsca 42056 | The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) | ||
| Theorem | hlhilip 42057* | Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) ⇒ ⊢ (𝜑 → , = (·𝑖‘𝑈)) | ||
| Theorem | hlhilipval 42058 | Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ , = (·𝑖‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 , 𝑌) = ((𝑆‘𝑌)‘𝑋)) | ||
| Theorem | hlhilnvl 42059 | The involution operation of the star division ring for the final constructed Hilbert space. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ∗ = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) | ||
| Theorem | hlhillvec 42060 | The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LVec) | ||
| Theorem | hlhildrng 42061 | The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑅 = (Scalar‘𝑈) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | hlhilsrnglem 42062 | Lemma for hlhilsrng 42063. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ · = (.r‘𝑆) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Theorem | hlhilsrng 42063 | The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 21-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑅 = (Scalar‘𝑈) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Theorem | hlhil0 42064 | The zero vector for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 0 = (0g‘𝐿) ⇒ ⊢ (𝜑 → 0 = (0g‘𝑈)) | ||
| Theorem | hlhillsm 42065 | The vector sum operation for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ ⊕ = (LSSum‘𝐿) ⇒ ⊢ (𝜑 → ⊕ = (LSSum‘𝑈)) | ||
| Theorem | hlhilocv 42066 | The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑂 = (ocv‘𝑈) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑂‘𝑋) = (𝑁‘𝑋)) | ||
| Theorem | hlhillcs 42067 | The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 42045 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 = ran 𝐼) | ||
| Theorem | hlhilphllem 42068* | Lemma for hlhil 25380. (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ + = (+g‘𝐿) & ⊢ · = ( ·𝑠 ‘𝐿) & ⊢ 𝑅 = (Scalar‘𝐿) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑄 = (0g‘𝑅) & ⊢ 0 = (0g‘𝐿) & ⊢ , = (·𝑖‘𝑈) & ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) ⇒ ⊢ (𝜑 → 𝑈 ∈ PreHil) | ||
| Theorem | hlhilhillem 42069* | Lemma for hlhil 25380. (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ + = (+g‘𝐿) & ⊢ · = ( ·𝑠 ‘𝐿) & ⊢ 𝑅 = (Scalar‘𝐿) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑄 = (0g‘𝑅) & ⊢ 0 = (0g‘𝐿) & ⊢ , = (·𝑖‘𝑈) & ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) & ⊢ 𝑂 = (ocv‘𝑈) & ⊢ 𝐶 = (ClSubSp‘𝑈) ⇒ ⊢ (𝜑 → 𝑈 ∈ Hil) | ||
| Theorem | hlathil 42070 |
Construction of a Hilbert space (df-hil 21651) 𝑈 from a Hilbert
lattice (df-hlat 39460) 𝐾, where 𝑊 is a fixed but arbitrary
hyperplane (co-atom) in 𝐾.
The Hilbert space 𝑈 is identical to the vector space ((DVecH‘𝐾)‘𝑊) (see dvhlvec 41218) except that it is extended with involution and inner product components. The construction of these two components is provided by Theorem 3.6 in [Holland95] p. 13, whose proof we follow loosely. An example of involution is the complex conjugate when the division ring is the field of complex numbers. The nature of the division ring we constructed is indeterminate, however, until we specialize the initial Hilbert lattice with additional conditions found by Maria Solèr in 1995 and refined by René Mayet in 1998 that result in a division ring isomorphic to ℂ. See additional discussion at https://us.metamath.org/qlegif/mmql.html#what 41218. 𝑊 corresponds to the w in the proof of Theorem 13.4 of [Crawley] p. 111. Such a 𝑊 always exists since HL has lattice rank of at least 4 by df-hil 21651. It can be eliminated if we just want to show the existence of a Hilbert space, as is done in the literature. (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ Hil) | ||
| Syntax | ccsrg 42071 | Extend class notation with the class of all commutative semirings. |
| class CSRing | ||
| Definition | df-csring 42072 | Define the class of all commutative semirings. (Contributed by metakunt, 4-Apr-2025.) |
| ⊢ CSRing = {𝑓 ∈ SRing ∣ (mulGrp‘𝑓) ∈ CMnd} | ||
| Theorem | iscsrg 42073 | A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd)) | ||
| Theorem | rhmzrhval 42074 | Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ ℤ) & ⊢ 𝑀 = (ℤRHom‘𝑅) & ⊢ 𝑁 = (ℤRHom‘𝑆) ⇒ ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) | ||
| Theorem | zndvdchrrhm 42075* | Construction of a ring homomorphism from ℤ/nℤ to 𝑅 when the characteristic of 𝑅 divides 𝑁. (Contributed by metakunt, 4-Jun-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (chr‘𝑅) ∈ ℤ) & ⊢ (𝜑 → (chr‘𝑅) ∥ 𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ∪ ((ℤRHom‘𝑅) “ 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑍 RingHom 𝑅)) | ||
| Theorem | relogbcld 42076 | Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 𝐵 ≠ 1) ⇒ ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℝ) | ||
| Theorem | relogbexpd 42077 | Identity law for general logarithm: the logarithm of a power to the base is the exponent, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ≠ 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | relogbzexpd 42078 | Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ≠ 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐵 logb (𝐶↑𝑁)) = (𝑁 · (𝐵 logb 𝐶))) | ||
| Theorem | logblebd 42079 | The general logarithm is monotone/increasing, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 2 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝑌) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌)) | ||
| Theorem | uzindd 42080* | Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.) |
| ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | fzadd2d 42081 | Membership of a sum in a finite interval of integers, a deduction version. (Contributed by metakunt, 10-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑂 ∈ ℤ) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐾 ∈ (𝑂...𝑃)) & ⊢ (𝜑 → 𝑄 = (𝑀 + 𝑂)) & ⊢ (𝜑 → 𝑅 = (𝑁 + 𝑃)) ⇒ ⊢ (𝜑 → (𝐽 + 𝐾) ∈ (𝑄...𝑅)) | ||
| Theorem | zltp1led 42082 | Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | fzne2d 42083 | Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐾 ≠ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 < 𝑁) | ||
| Theorem | eqfnfv2d2 42084* | Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | fzsplitnd 42085 | Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) | ||
| Theorem | fzsplitnr 42086 | Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝐾) & ⊢ (𝜑 → 𝐾 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) | ||
| Theorem | addassnni 42087 | Associative law for addition. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐶 ∈ ℕ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
| Theorem | addcomnni 42088 | Commutative law for addition. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
| Theorem | mulassnni 42089 | Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐶 ∈ ℕ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
| Theorem | mulcomnni 42090 | Commutative law for multiplication. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
| Theorem | gcdcomnni 42091 | Commutative law for gcd. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀) | ||
| Theorem | gcdnegnni 42092 | Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁) | ||
| Theorem | neggcdnni 42093 | Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁) | ||
| Theorem | bccl2d 42094 | Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑁C𝐾) ∈ ℕ) | ||
| Theorem | recbothd 42095 | Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶))) | ||
| Theorem | gcdmultiplei 42096 | The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀 | ||
| Theorem | gcdaddmzz2nni 42097 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))) | ||
| Theorem | gcdaddmzz2nncomi 42098 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) | ||
| Theorem | gcdnncli 42099 | Closure of the gcd operator. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd 𝑁) ∈ ℕ | ||
| Theorem | muldvds1d 42100 | If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝐾 · 𝑀) ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ 𝑁) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |