Home | Metamath
Proof Explorer Theorem List (p. 421 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pm13.195 42001* | Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3748. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
Theorem | pm13.196a 42002* | Theorem *13.196 in [WhiteheadRussell] p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (¬ 𝜑 ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) | ||
Theorem | 2sbc6g 42003* | Theorem *13.21 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
Theorem | 2sbc5g 42004* | Theorem *13.22 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
Theorem | iotain 42005 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) | ||
Theorem | iotaexeu 42006 | The iota class exists. This theorem does not require ax-nul 5234 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | ||
Theorem | iotasbc 42007* | Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define ℩ in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) | ||
Theorem | iotasbc2 42008* | Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | ||
Theorem | pm14.12 42009* | Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | pm14.122a 42010* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) | ||
Theorem | pm14.122b 42011* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
Theorem | pm14.122c 42012* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
Theorem | pm14.123a 42013* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))) | ||
Theorem | pm14.123b 42014* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
Theorem | pm14.123c 42015* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
Theorem | pm14.18 42016 | Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | iotaequ 42017* | Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 | ||
Theorem | iotavalb 42018* | Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6406. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) | ||
Theorem | iotasbc5 42019* | Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) | ||
Theorem | pm14.24 42020* | Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = (℩𝑥𝜑))) | ||
Theorem | iotavalsb 42021* | Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) | ||
Theorem | sbiota1 42022 | Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | sbaniota 42023 | Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | eubiOLD 42024 | Obsolete proof of eubi 2586 as of 7-Oct-2022. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) | ||
Theorem | iotasbcq 42025 | Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) | ||
Theorem | elnev 42026* | Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.) |
⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) | ||
Theorem | rusbcALT 42027 | A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Theorem | compeq 42028* | Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥 ∈ 𝐴} | ||
Theorem | compne 42029 | The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.) |
⊢ (V ∖ 𝐴) ≠ 𝐴 | ||
Theorem | compab 42030 | Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} | ||
Theorem | conss2 42031 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) | ||
Theorem | conss1 42032 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴) | ||
Theorem | ralbidar 42033 | More general form of ralbida 3159. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidar 42034 | More general form of rexbida 3249. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | dropab1 42035 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) | ||
Theorem | dropab2 42036 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) | ||
Theorem | ipo0 42037 | If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) | ||
Theorem | ifr0 42038 | A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) | ||
Theorem | ordpss 42039 | ordelpss 6293 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
Theorem | fvsb 42040* | Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
Theorem | fveqsb 42041* | Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
Theorem | xpexb 42042 | A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) | ||
Theorem | trelpss 42043 | An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5574, ax-reg 9329 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) | ||
Theorem | addcomgi 42044 | Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
Syntax | cplusr 42045 | Introduce the operation of vector addition. |
class +𝑟 | ||
Syntax | cminusr 42046 | Introduce the operation of vector subtraction. |
class -𝑟 | ||
Syntax | ctimesr 42047 | Introduce the operation of scalar multiplication. |
class .𝑣 | ||
Syntax | cptdfc 42048 | PtDf is a predicate that is crucial for the definition of lines as well as proving a number of important theorems. |
class PtDf(𝐴, 𝐵) | ||
Syntax | crr3c 42049 | RR3 is a class. |
class RR3 | ||
Syntax | cline3 42050 | line3 is a class. |
class line3 | ||
Definition | df-addr 42051* | Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) | ||
Definition | df-subr 42052* | Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) | ||
Definition | df-mulv 42053* | Define the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | ||
Theorem | addrval 42054* | Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) | ||
Theorem | subrval 42055* | Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) | ||
Theorem | mulvval 42056* | Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) | ||
Theorem | addrfv 42057 | Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) | ||
Theorem | subrfv 42058 | Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) | ||
Theorem | mulvfv 42059 | Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) | ||
Theorem | addrfn 42060 | Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | ||
Theorem | subrfn 42061 | Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) | ||
Theorem | mulvfn 42062 | Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) | ||
Theorem | addrcom 42063 | Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) | ||
Definition | df-ptdf 42064* | Define the predicate PtDf, which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) |
⊢ PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) | ||
Definition | df-rr3 42065 | Define the set of all points RR3. We define each point 𝐴 as a function to allow the use of vector addition and subtraction as well as scalar multiplication in our proofs. (Contributed by Andrew Salmon, 15-Jul-2012.) |
⊢ RR3 = (ℝ ↑m {1, 2, 3}) | ||
Definition | df-line3 42066* | Define the set of all lines. A line is an infinite subset of RR3 that satisfies a PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012.) |
⊢ line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o ≼ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} | ||
We are sad to report the passing of long-time contributor Alan Sare (Nov. 9, 1954 - Mar. 23, 2019). Alan's first contribution to Metamath was a shorter proof for tfrlem8 8206 in 2008. He developed a tool called "completeusersproof" that assists developing proofs using his "virtual deduction" method: https://us.metamath.org/other.html#completeusersproof 8206. His virtual deduction method is explained in the comment for wvd1 42159. Below are some excerpts from his first emails to NM in 2007: ...I have been interested in proving set theory theorems for many years for mental exercise. I enjoy it. I have used a book by Martin Zuckerman. It is informal. I am interested in completely and perfectly proving theorems. Mr. Zuckerman leaves out most of the steps of a proof, of course, like most authors do, as you have noted. A complete proof for higher theorems would require a volume of writing similar to the Metamath documents. So I am frustrated when I am not capable of constructing a proof and Zuckerman leaves out steps I do not understand. I could search for the steps in other texts, but I don't do that too much. Metamath may be the answer for me.... ...If we go beyond mathematics, I believe that it is possible to write down all human knowledge in a way similar to the way you have explicated large areas of mathematics. Of course, that would be a much, much more difficult job. For example, it is possible to take a hard science like physics, construct axioms based on experimental results, and to cast all of physics into a collection of axioms and theorems. Maybe this has already been attempted, although I am not familiar with it. When one then moves on to the soft sciences such as social science, this job gets much more difficult. The key is: All human thought consists of logical operations on abstract objects. Usually, these logical operations are done informally. There is no reason why one cannot take any subject and explicate it and take it down to the indivisible postulates in a formal rigorous way.... ...When I read a math book or an engineering book I come across something I don't understand and I am compelled to understand it. But, often it is hopeless. I don't have the time. Or, I would have to read the same thing by multiple authors in the hope that different authors would give parts of the working proof that others have omitted. It is very inefficient. Because I have always been inclined to "get to the bottom" for a 100% fully understood proof.... | ||
Theorem | idiALT 42067 | Placeholder for idi 1. Though unnecessary, this theorem is sometimes used in proofs in this mathbox for pedagogical purposes. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | exbir 42068 | Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 42443. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | 3impexpbicom 42069 | Version of 3impexp 1357 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) | ||
Theorem | 3impexpbicomi 42070 | Inference associated with 3impexpbicom 42069. Derived automatically from 3impexpbicomiVD 42448. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | ||
Theorem | bi1imp 42071 | Importation inference similar to imp 407, except the outermost implication of the hypothesis is a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | bi2imp 42072 | Importation inference similar to imp 407, except both implications of the hypothesis are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | bi3impb 42073 | Similar to 3impb 1114 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi3impa 42074 | Similar to 3impa 1109 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi23impib 42075 | 3impib 1115 with the inner implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi13impib 42076 | 3impib 1115 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi123impib 42077 | 3impib 1115 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi13impia 42078 | 3impia 1116 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi123impia 42079 | 3impia 1116 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi33imp12 42080 | 3imp 1110 with innermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi23imp13 42081 | 3imp 1110 with middle implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi13imp23 42082 | 3imp 1110 with outermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi13imp2 42083 | Similar to 3imp 1110 except the outermost and innermost implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi12imp3 42084 | Similar to 3imp 1110 except all but innermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi23imp1 42085 | Similar to 3imp 1110 except all but outermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | bi123imp0 42086 | Similar to 3imp 1110 except all implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.) |
⊢ (𝜑 ↔ (𝜓 ↔ (𝜒 ↔ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 4animp1 42087 | A single hypothesis unification deduction with an assertion which is an implication with a 4-right-nested conjunction antecedent. (Contributed by Alan Sare, 30-May-2018.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 4an31 42088 | A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) |
⊢ ((((𝜒 ∧ 𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 4an4132 42089 | A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) |
⊢ ((((𝜃 ∧ 𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | expcomdg 42090 | Biconditional form of expcomd 417. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) |
⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓 → 𝜃)))) | ||
Theorem | iidn3 42091 | idn3 42205 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜒))) | ||
Theorem | ee222 42092 | e222 42226 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | ee3bir 42093 | Right-biconditional form of e3 42327 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜏 ↔ 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) | ||
Theorem | ee13 42094 | e13 42338 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 28-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) & ⊢ (𝜓 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜂))) | ||
Theorem | ee121 42095 | e121 42246 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||
Theorem | ee122 42096 | e122 42243 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → (𝜒 → 𝜏)) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||
Theorem | ee333 42097 | e333 42323 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) | ||
Theorem | ee323 42098 | e323 42356 without virtual deductions. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) | ||
Theorem | 3ornot23 42099 | If the second and third disjuncts of a true triple disjunction are false, then the first disjunct is true. Automatically derived from 3ornot23VD 42437. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 ∨ 𝜑 ∨ 𝜓) → 𝜒)) | ||
Theorem | orbi1r 42100 | orbi1 915 with order of disjuncts reversed. Derived from orbi1rVD 42438. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |