HomeHome Metamath Proof Explorer
Theorem List (p. 421 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28697)
  Hilbert Space Explorer  Hilbert Space Explorer
(28698-30220)
  Users' Mathboxes  Users' Mathboxes
(30221-44913)
 

Theorem List for Metamath Proof Explorer - 42001-42100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlimsupubuz 42001* For a real-valued function on a set of upper integers, if the superior limit is not +∞, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim sup‘𝐹) ≠ +∞)       (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
 
Theoremcliminf2mpt 42002* A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑘𝜑    &   𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)    &   (𝑘 = 𝑗𝐵 = 𝐶)    &   ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)    &   (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )       (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
 
Theoremcliminfmpt 42003* A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑘𝜑    &   𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)    &   (𝑘 = 𝑗𝐵 = 𝐶)    &   ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥𝐵)       (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
 
Theoremcliminf3 42004* A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑘𝜑    &   𝑘𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))    &   (𝜑𝐹 ∈ dom ⇝ )       (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
 
Theoremlimsupvaluzmpt 42005* The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ*)       (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
 
Theoremlimsupequzmpt2 42006* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   𝑗𝐴    &   𝑗𝐵    &   𝐴 = (ℤ𝑀)    &   𝐵 = (ℤ𝑁)    &   (𝜑𝐾𝐴)    &   (𝜑𝐾𝐵)    &   ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)       (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
 
Theoremlimsupubuzmpt 42007* If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)       (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
 
Theoremlimsupmnflem 42008* The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐹:𝐴⟶ℝ*)    &   𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))       (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
 
Theoremlimsupmnf 42009* The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐹:𝐴⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
 
Theoremlimsupequzlem 42010* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑘𝜑    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹 Fn (ℤ𝑀))    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐺 Fn (ℤ𝑁))    &   (𝜑𝐾 ∈ ℤ)    &   ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
 
Theoremlimsupequz 42011* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑘𝜑    &   𝑘𝐹    &   𝑘𝐺    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹 Fn (ℤ𝑀))    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐺 Fn (ℤ𝑁))    &   (𝜑𝐾 ∈ ℤ)    &   ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
 
Theoremlimsupre2lem 42012* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐹:𝐴⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
 
Theoremlimsupre2 42013* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐹:𝐴⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
 
Theoremlimsupmnfuzlem 42014* The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
 
Theoremlimsupmnfuz 42015* The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
 
Theoremlimsupequzmptlem 42016* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   𝐴 = (ℤ𝑀)    &   𝐵 = (ℤ𝑁)    &   ((𝜑𝑗𝐴) → 𝐶𝑉)    &   ((𝜑𝑗𝐵) → 𝐶𝑊)    &   𝐾 = if(𝑀𝑁, 𝑁, 𝑀)       (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
 
Theoremlimsupequzmpt 42017* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   𝐴 = (ℤ𝑀)    &   𝐵 = (ℤ𝑁)    &   ((𝜑𝑗𝐴) → 𝐶𝑉)    &   ((𝜑𝑗𝐵) → 𝐶𝑊)       (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
 
Theoremlimsupre2mpt 42018* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ⊆ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)       (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))))
 
Theoremlimsupequzmptf 42019* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   𝑗𝐴    &   𝑗𝐵    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   𝐴 = (ℤ𝑀)    &   𝐵 = (ℤ𝑁)    &   ((𝜑𝑗𝐴) → 𝐶𝑉)    &   ((𝜑𝑗𝐵) → 𝐶𝑊)       (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
 
Theoremlimsupre3lem 42020* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐹:𝐴⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
 
Theoremlimsupre3 42021* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐹:𝐴⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
 
Theoremlimsupre3mpt 42022* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ⊆ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)       (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
 
Theoremlimsupre3uzlem 42023* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
 
Theoremlimsupre3uz 42024* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
 
Theoremlimsupreuz 42025* Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)))
 
Theoremlimsupvaluz2 42026* The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim sup‘𝐹) ∈ ℝ)       (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
 
Theoremlimsupreuzmpt 42027* Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)       (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
 
Theoremsupcnvlimsup 42028* If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim sup‘𝐹) ∈ ℝ)       (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
 
Theoremsupcnvlimsupmpt 42029* If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ∈ ℝ)       (𝜑 → (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗𝑍𝐵)))
 
Theorem0cnv 42030 If (/) is a complex number, then it converges to itself. (see 0ncn 10557 and its comment ; see also the comment in climlimsupcex 42057) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(∅ ∈ ℂ → ∅ ⇝ ∅)
 
Theoremclimuzlem 42031* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℂ)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
 
Theoremclimuz 42032* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℂ)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
 
Theoremlmbr3v 42033* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝐽 ∈ (TopOn‘𝑋))       (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
 
Theoremclimisp 42034* If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℂ)    &   (𝜑𝐹𝐴)    &   (𝜑𝑋 ∈ ℝ+)    &   ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
 
Theoremlmbr3 42035* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
𝑘𝐹    &   (𝜑𝐽 ∈ (TopOn‘𝑋))       (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
 
Theoremclimrescn 42036* A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹 Fn 𝑍)    &   (𝜑𝐹 ∈ dom ⇝ )       (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
 
Theoremclimxrrelem 42037* If a seqence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)    &   (𝜑𝐹𝐴)    &   (𝜑𝐷 ∈ ℝ+)    &   ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))    &   ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))       (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
 
Theoremclimxrre 42038* If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐹𝐴)       (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
 
20.37.7.1  Inferior limit (lim inf)
 
Syntaxclsi 42039 Extend class notation to include the liminf function. (actually, it makes sense for any extended real function defined on a subset of RR which is not upper-bounded)
class lim inf
 
Definitiondf-liminf 42040* Define the inferior limit of a sequence of extended real numbers. (Contributed by GS, 2-Jan-2022.)
lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
 
Theoremlimsuplt2 42041* The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐵 ⊆ ℝ)    &   (𝜑𝐹:𝐵⟶ℝ*)    &   (𝜑𝐴 ∈ ℝ*)       (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
 
Theoremliminfgord 42042 Ordering property of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ))
 
Theoremlimsupvald 42043* The superior limit of a sequence 𝐹 of extended real numbers is the infimum of the set of suprema of all restrictions of 𝐹 to an upperset of reals . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)    &   𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
 
Theoremlimsupresicompt 42044* The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴𝑉)    &   (𝜑𝑀 ∈ ℝ)    &   𝑍 = (𝑀[,)+∞)       (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴𝑍) ↦ 𝐵)))
 
Theoremlimsupcli 42045 Closure of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐹𝑉       (lim sup‘𝐹) ∈ ℝ*
 
Theoremliminfgf 42046 Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       𝐺:ℝ⟶ℝ*
 
Theoremliminfval 42047* The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
 
Theoremclimlimsup 42048 A sequence of real numbers converges if and only if it converges to its superior limit. The first hypothesis is needed (see climlimsupcex 42057 for a counterexample) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹)))
 
Theoremlimsupge 42049* The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐵 ⊆ ℝ)    &   (𝜑𝐹:𝐵⟶ℝ*)    &   (𝜑𝐴 ∈ ℝ*)       (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
 
Theoremliminfgval 42050* Value of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       (𝑀 ∈ ℝ → (𝐺𝑀) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))
 
Theoremliminfcl 42051 Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐹𝑉 → (lim inf‘𝐹) ∈ ℝ*)
 
Theoremliminfvald 42052* The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)    &   𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
 
Theoremliminfval5 42053* The inferior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝜑    &   (𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴⟶ℝ*)    &   𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))       (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
 
Theoremlimsupresxr 42054 The superior limit of a function only depends on the restriction of that function to the preimage of the set of extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)    &   (𝜑 → Fun 𝐹)    &   𝐴 = (𝐹 “ ℝ*)       (𝜑 → (lim sup‘(𝐹𝐴)) = (lim sup‘𝐹))
 
Theoremliminfresxr 42055 The inferior limit of a function only depends on the preimage of the extended real part. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)    &   (𝜑 → Fun 𝐹)    &   𝐴 = (𝐹 “ ℝ*)       (𝜑 → (lim inf‘(𝐹𝐴)) = (lim inf‘𝐹))
 
Theoremliminfval2 42056* The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))    &   (𝜑𝐹𝑉)    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑 → sup(𝐴, ℝ*, < ) = +∞)       (𝜑 → (lim inf‘𝐹) = sup((𝐺𝐴), ℝ*, < ))
 
Theoremclimlimsupcex 42057 Counterexample for climlimsup 42048, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 10557 and its comment) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
¬ 𝑀 ∈ ℤ    &   𝑍 = (ℤ𝑀)    &   𝐹 = ∅       ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))
 
Theoremliminfcld 42058 Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)       (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
 
Theoremliminfresico 42059 The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℝ)    &   𝑍 = (𝑀[,)+∞)    &   (𝜑𝐹𝑉)       (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
 
Theoremlimsup10exlem 42060* The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))    &   (𝜑𝐾 ∈ ℝ)       (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
 
Theoremlimsup10ex 42061 The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))       (lim sup‘𝐹) = 1
 
Theoremliminf10ex 42062 The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))       (lim inf‘𝐹) = 0
 
Theoremliminflelimsuplem 42063* The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)    &   (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)       (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
 
Theoremliminflelimsup 42064* The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex 42085 for a counterexample). The inequality can be strict, see liminfltlimsupex 42069. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)    &   (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)       (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
 
Theoremlimsupgtlem 42065* For any positive real, the superior limit of F is larger than any of its values at large enough arguments, up to that positive real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim sup‘𝐹) ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ+)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
 
Theoremlimsupgt 42066* Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim sup‘𝐹) ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ+)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
 
Theoremliminfresre 42067 The inferior limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)       (𝜑 → (lim inf‘(𝐹 ↾ ℝ)) = (lim inf‘𝐹))
 
Theoremliminfresicompt 42068* The inferior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℝ)    &   𝑍 = (𝑀[,)+∞)    &   (𝜑𝐴𝑉)       (𝜑 → (lim inf‘(𝑥 ∈ (𝐴𝑍) ↦ 𝐵)) = (lim inf‘(𝑥𝐴𝐵)))
 
Theoremliminfltlimsupex 42069 An example where the lim inf is strictly smaller than the lim sup. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))       (lim inf‘𝐹) < (lim sup‘𝐹)
 
Theoremliminfgelimsup 42070* The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹𝑉)    &   (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)       (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
 
Theoremliminfvalxr 42071* Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝐹    &   (𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴⟶ℝ*)       (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
 
Theoremliminfresuz 42072 If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝑉)    &   (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)       (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
 
Theoremliminflelimsupuz 42073 The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)       (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
 
Theoremliminfvalxrmpt 42074* Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)       (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
 
Theoremliminfresuz2 42075 If the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝑉)    &   (𝜑 → dom 𝐹 ⊆ ℤ)       (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
 
Theoremliminfgelimsupuz 42076 The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)       (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
 
Theoremliminfval4 42077* Alternate definition of lim inf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   (𝜑𝑀 ∈ ℝ)    &   ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ)       (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝐵)))
 
Theoremliminfval3 42078* Alternate definition of lim inf when the given function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   (𝜑𝑀 ∈ ℝ)    &   ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)       (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
 
Theoremliminfequzmpt2 42079* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑗𝜑    &   𝑗𝐴    &   𝑗𝐵    &   𝐴 = (ℤ𝑀)    &   𝐵 = (ℤ𝑁)    &   (𝜑𝐾𝐴)    &   (𝜑𝐾𝐵)    &   ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)       (𝜑 → (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗𝐵𝐶)))
 
Theoremliminfvaluz 42080* Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)       (𝜑 → (lim inf‘(𝑘𝑍𝐵)) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒𝐵)))
 
Theoremliminf0 42081 The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(lim inf‘∅) = +∞
 
Theoremlimsupval4 42082* Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   (𝜑𝑀 ∈ ℝ)    &   ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)       (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
 
Theoremliminfvaluz2 42083* Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)       (𝜑 → (lim inf‘(𝑘𝑍𝐵)) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝐵)))
 
Theoremliminfvaluz3 42084* Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝜑    &   𝑘𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ*)       (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -𝑒(𝐹𝑘))))
 
Theoremliminflelimsupcex 42085 A counterexample for liminflelimsup 42064, showing that the second hypothesis is needed. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(lim sup‘∅) < (lim inf‘∅)
 
Theoremlimsupvaluz3 42086* Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)       (𝜑 → (lim sup‘(𝑘𝑍𝐵)) = -𝑒(lim inf‘(𝑘𝑍 ↦ -𝑒𝐵)))
 
Theoremliminfvaluz4 42087* Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝜑    &   𝑘𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
 
Theoremlimsupvaluz4 42088* Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)       (𝜑 → (lim sup‘(𝑘𝑍𝐵)) = -𝑒(lim inf‘(𝑘𝑍 ↦ -𝐵)))
 
Theoremclimliminflimsupd 42089 If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑𝐹 ∈ dom ⇝ )       (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
 
Theoremliminfreuzlem 42090* Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑗𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
 
Theoremliminfreuz 42091* Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑗𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
 
Theoremliminfltlem 42092* Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim inf‘𝐹) ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ+)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
 
Theoremliminflt 42093* Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑘𝐹    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim inf‘𝐹) ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ+)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
 
Theoremclimliminf 42094 A sequence of real numbers converges if and only if it converges to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim inf‘𝐹)))
 
Theoremliminflimsupclim 42095 A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz 42073). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)    &   (𝜑 → (lim inf‘𝐹) ∈ ℝ)    &   (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹))       (𝜑𝐹 ∈ dom ⇝ )
 
Theoremclimliminflimsup 42096 A sequence of real numbers converges if and only if its inferior limit is real and it is greater than or equal to its superior limit (in such a case, they are actually equal, see liminfgelimsupuz 42076). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
 
Theoremclimliminflimsup2 42097 A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz 42076). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
 
Theoremclimliminflimsup3 42098 A sequence of real numbers converges if and only if its inferior limit is real and equal to its superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim inf‘𝐹) = (lim sup‘𝐹))))
 
Theoremclimliminflimsup4 42099 A sequence of real numbers converges if and only if its superior limit is real and equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐹:𝑍⟶ℝ)       (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim inf‘𝐹) = (lim sup‘𝐹))))
 
Theoremlimsupub2 42100* A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
𝑗𝜑    &   𝑗𝐹    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐹:𝐴⟶ℝ*)    &   (𝜑 → (lim sup‘𝐹) ≠ +∞)       (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44913
  Copyright terms: Public domain < Previous  Next >