Home | Metamath
Proof Explorer Theorem List (p. 421 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 19.21vv 42001* | Compare Theorem *11.3 in [WhiteheadRussell] p. 161. Special case of theorem 19.21 of [Margaris] p. 90 with two quantifiers. See 19.21v 1943. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∀𝑥∀𝑦𝜑)) | ||
Theorem | 2alim 42002 | Theorem *11.32 in [WhiteheadRussell] p. 162. Theorem 19.20 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | 2albi 42003 | Theorem *11.33 in [WhiteheadRussell] p. 162. Theorem 19.15 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) | ||
Theorem | 2exim 42004 | Theorem *11.34 in [WhiteheadRussell] p. 162. Theorem 19.22 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓)) | ||
Theorem | 2exbi 42005 | Theorem *11.341 in [WhiteheadRussell] p. 162. Theorem 19.18 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓)) | ||
Theorem | spsbce-2 42006 | Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) | ||
Theorem | 19.33-2 42007 | Theorem *11.421 in [WhiteheadRussell] p. 163. Theorem 19.33 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥∀𝑦𝜑 ∨ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) | ||
Theorem | 19.36vv 42008* | Theorem *11.43 in [WhiteheadRussell] p. 163. Theorem 19.36 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 → 𝜓) ↔ (∀𝑥∀𝑦𝜑 → 𝜓)) | ||
Theorem | 19.31vv 42009* | Theorem *11.44 in [WhiteheadRussell] p. 163. Theorem 19.31 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∨ 𝜓)) | ||
Theorem | 19.37vv 42010* | Theorem *11.46 in [WhiteheadRussell] p. 164. Theorem 19.37 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∃𝑥∃𝑦𝜑)) | ||
Theorem | 19.28vv 42011* | Theorem *11.47 in [WhiteheadRussell] p. 164. Theorem 19.28 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | ||
Theorem | pm11.52 42012 | Theorem *11.52 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥∀𝑦(𝜑 → ¬ 𝜓)) | ||
Theorem | aaanv 42013* | Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2329. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | pm11.57 42014* | Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.58 42015* | Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.59 42016* | Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) | ||
Theorem | pm11.6 42017* | Theorem *11.6 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | pm11.61 42018* | Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) | ||
Theorem | pm11.62 42019* | Theorem *11.62 in [WhiteheadRussell] p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝜒) ↔ ∀𝑥(𝜑 → ∀𝑦(𝜓 → 𝜒))) | ||
Theorem | pm11.63 42020 | Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (¬ ∃𝑥∃𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) | ||
Theorem | pm11.7 42021 | Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜑) ↔ ∃𝑥∃𝑦𝜑) | ||
Theorem | pm11.71 42022* | Theorem *11.71 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜒) → ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑦(𝜒 → 𝜃)) ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)))) | ||
Theorem | sbeqal1 42023* | If 𝑥 = 𝑦 always implies 𝑥 = 𝑧, then 𝑦 = 𝑧. (Contributed by Andrew Salmon, 2-Jun-2011.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → 𝑦 = 𝑧) | ||
Theorem | sbeqal1i 42024* | Suppose you know 𝑥 = 𝑦 implies 𝑥 = 𝑧, assuming 𝑥 and 𝑧 are distinct. Then, 𝑦 = 𝑧. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑦 = 𝑧 | ||
Theorem | sbeqal2i 42025* | If 𝑥 = 𝑦 implies 𝑥 = 𝑧, then we can infer 𝑧 = 𝑦. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑧) ⇒ ⊢ 𝑧 = 𝑦 | ||
Theorem | axc5c4c711 42026 | Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1798 as the inference rule. This proof extends the idea of axc5c711 36939 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.) |
⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) | ||
Theorem | axc5c4c711toc5 42027 | Rederivation of sp 2177 from axc5c4c711 42026. Note that ax6 2385 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1973 instead of ax6 2385, so that this rederivation requires only ax6v 1973 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | axc5c4c711toc4 42028 | Rederivation of axc4 2316 from axc5c4c711 42026. Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | axc5c4c711toc7 42029 | Rederivation of axc7 2312 from axc5c4c711 42026. Note that neither axc7 2312 nor ax-11 2155 are required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
Theorem | axc5c4c711to11 42030 | Rederivation of ax-11 2155 from axc5c4c711 42026. Note that ax-11 2155 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | axc11next 42031* | This theorem shows that, given axextb 2713, we can derive a version of axc11n 2427. However, it is weaker than axc11n 2427 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥) | ||
Theorem | pm13.13a 42032 | One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑) | ||
Theorem | pm13.13b 42033 | Theorem *13.13 in [WhiteheadRussell] p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (([𝐴 / 𝑥]𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | ||
Theorem | pm13.14 42034 | Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥 ≠ 𝐴) | ||
Theorem | pm13.192 42035* | Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
Theorem | pm13.193 42036 | Theorem *13.193 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝑥 = 𝑦)) | ||
Theorem | pm13.194 42037 | Theorem *13.194 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦)) | ||
Theorem | pm13.195 42038* | Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3745. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) | ||
Theorem | pm13.196a 42039* | Theorem *13.196 in [WhiteheadRussell] p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (¬ 𝜑 ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) | ||
Theorem | 2sbc6g 42040* | Theorem *13.21 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
Theorem | 2sbc5g 42041* | Theorem *13.22 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | ||
Theorem | iotain 42042 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) | ||
Theorem | iotaexeu 42043 | The iota class exists. This theorem does not require ax-nul 5231 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | ||
Theorem | iotasbc 42044* | Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define ℩ in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) | ||
Theorem | iotasbc2 42045* | Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | ||
Theorem | pm14.12 42046* | Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | pm14.122a 42047* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) | ||
Theorem | pm14.122b 42048* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
Theorem | pm14.122c 42049* | Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) | ||
Theorem | pm14.123a 42050* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))) | ||
Theorem | pm14.123b 42051* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
Theorem | pm14.123c 42052* | Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | ||
Theorem | pm14.18 42053 | Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | iotaequ 42054* | Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 | ||
Theorem | iotavalb 42055* | Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6411. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦)) | ||
Theorem | iotasbc5 42056* | Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))) | ||
Theorem | pm14.24 42057* | Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = (℩𝑥𝜑))) | ||
Theorem | iotavalsb 42058* | Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓 ↔ [(℩𝑥𝜑) / 𝑧]𝜓)) | ||
Theorem | sbiota1 42059 | Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | sbaniota 42060 | Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓)) | ||
Theorem | eubiOLD 42061 | Obsolete proof of eubi 2585 as of 7-Oct-2022. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) | ||
Theorem | iotasbcq 42062 | Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) | ||
Theorem | elnev 42063* | Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.) |
⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) | ||
Theorem | rusbcALT 42064 | A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Theorem | compeq 42065* | Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥 ∈ 𝐴} | ||
Theorem | compne 42066 | The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.) |
⊢ (V ∖ 𝐴) ≠ 𝐴 | ||
Theorem | compab 42067 | Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} | ||
Theorem | conss2 42068 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) | ||
Theorem | conss1 42069 | Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
⊢ ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴) | ||
Theorem | ralbidar 42070 | More general form of ralbida 3160. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexbidar 42071 | More general form of rexbida 3252. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | dropab1 42072 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) | ||
Theorem | dropab2 42073 | Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) | ||
Theorem | ipo0 42074 | If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) | ||
Theorem | ifr0 42075 | A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) | ||
Theorem | ordpss 42076 | ordelpss 6298 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
Theorem | fvsb 42077* | Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
Theorem | fveqsb 42078* | Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | ||
Theorem | xpexb 42079 | A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
⊢ ((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V) | ||
Theorem | trelpss 42080 | An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5574, ax-reg 9360 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) | ||
Theorem | addcomgi 42081 | Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
Syntax | cplusr 42082 | Introduce the operation of vector addition. |
class +𝑟 | ||
Syntax | cminusr 42083 | Introduce the operation of vector subtraction. |
class -𝑟 | ||
Syntax | ctimesr 42084 | Introduce the operation of scalar multiplication. |
class .𝑣 | ||
Syntax | cptdfc 42085 | PtDf is a predicate that is crucial for the definition of lines as well as proving a number of important theorems. |
class PtDf(𝐴, 𝐵) | ||
Syntax | crr3c 42086 | RR3 is a class. |
class RR3 | ||
Syntax | cline3 42087 | line3 is a class. |
class line3 | ||
Definition | df-addr 42088* | Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) | ||
Definition | df-subr 42089* | Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) | ||
Definition | df-mulv 42090* | Define the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | ||
Theorem | addrval 42091* | Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) | ||
Theorem | subrval 42092* | Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) | ||
Theorem | mulvval 42093* | Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) | ||
Theorem | addrfv 42094 | Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) | ||
Theorem | subrfv 42095 | Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) | ||
Theorem | mulvfv 42096 | Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) | ||
Theorem | addrfn 42097 | Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | ||
Theorem | subrfn 42098 | Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) Fn ℝ) | ||
Theorem | mulvfn 42099 | Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) Fn ℝ) | ||
Theorem | addrcom 42100 | Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |