![]() |
Metamath
Proof Explorer Theorem List (p. 421 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30604) |
![]() (30605-32127) |
![]() (32128-48014) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 7rexfrabdioph 42001* | Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) & ⊢ 𝐼 = (𝐽 + 1) & ⊢ 𝐻 = (𝐼 + 1) & ⊢ 𝐺 = (𝐻 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑡‘𝐼) / 𝑧][(𝑡‘𝐻) / 𝑝][(𝑡‘𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 ∃𝑧 ∈ ℕ0 ∃𝑝 ∈ ℕ0 ∃𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | rabdiophlem1 42002* | Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi 3082. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ) | ||
Theorem | rabdiophlem2 42003* | Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴) ∈ (mzPoly‘(1...𝑀))) | ||
Theorem | elnn0rabdioph 42004* | Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁)) | ||
Theorem | rexzrexnn0 42005* | Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) | ||
Theorem | lerabdioph 42006* | Diophantine set builder for the "less than or equal to" relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≤ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | eluzrabdioph 42007* | Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} ∈ (Dioph‘𝑁)) | ||
Theorem | elnnrabdioph 42008* | Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ ℕ} ∈ (Dioph‘𝑁)) | ||
Theorem | ltrabdioph 42009* | Diophantine set builder for the strict less than relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | nerabdioph 42010* | Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | dvdsrabdioph 42011* | Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∥ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | eldioph4b 42012* | Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑡 ∪ 𝑤)) = 0})) | ||
Theorem | eldioph4i 42013* | Forward-only version of eldioph4b 42012. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) | ||
Theorem | diophren 42014* | Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑀)) ∣ (𝑎 ∘ 𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)) | ||
Theorem | rabrenfdioph 42015* | Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) | ||
Theorem | rabren3dioph 42016* | Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ (((𝑎‘1) = (𝑏‘𝑋) ∧ (𝑎‘2) = (𝑏‘𝑌) ∧ (𝑎‘3) = (𝑏‘𝑍)) → (𝜑 ↔ 𝜓)) & ⊢ 𝑋 ∈ (1...𝑁) & ⊢ 𝑌 ∈ (1...𝑁) & ⊢ 𝑍 ∈ (1...𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) | ||
Theorem | fphpd 42017* | Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷)) | ||
Theorem | fphpdo 42018* | Pigeonhole principle for sets of real numbers with implicit output reordering. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑧 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝑧 = 𝑦 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 < 𝑦 ∧ 𝐷 = 𝐸)) | ||
Theorem | ctbnfien 42019 | An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) | ||
Theorem | fiphp3d 42020* | Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
⊢ (𝜑 → 𝐴 ≈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | ||
Theorem | rencldnfilem 42021* | Lemma for rencldnfi 42022. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵 ∈ 𝐴)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
Theorem | rencldnfi 42022* | A set of real numbers which comes arbitrarily close to some target yet excludes it is infinite. The work is done in rencldnfilem 42021 using infima; this theorem removes the requirement that A be nonempty. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ 𝐴) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
Theorem | irrapxlem1 42023* | Lemma for irrapx1 42029. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 42018 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))) | ||
Theorem | irrapxlem2 42024* | Lemma for irrapx1 42029. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))) | ||
Theorem | irrapxlem3 42025* | Lemma for irrapx1 42029. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)) | ||
Theorem | irrapxlem4 42026* | Lemma for irrapx1 42029. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥 ≤ 𝐵, 𝐵, 𝑥))) | ||
Theorem | irrapxlem5 42027* | Lemma for irrapx1 42029. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥 − 𝐴)) < 𝐵 ∧ (abs‘(𝑥 − 𝐴)) < ((denom‘𝑥)↑-2))) | ||
Theorem | irrapxlem6 42028* | Lemma for irrapx1 42029. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) | ||
Theorem | irrapx1 42029* | Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) | ||
Theorem | pellexlem1 42030 | Lemma for pellex 42036. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0) | ||
Theorem | pellexlem2 42031 | Lemma for pellex 42036. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷)))) | ||
Theorem | pellexlem3 42032* | Lemma for pellex 42036. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) | ||
Theorem | pellexlem4 42033* | Lemma for pellex 42036. Invoking irrapx1 42029, we have infinitely many near-solutions. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ) | ||
Theorem | pellexlem5 42034* | Lemma for pellex 42036. Invoking fiphp3d 42020, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)) | ||
Theorem | pellexlem6 42035* | Lemma for pellex 42036. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → ¬ (√‘𝐷) ∈ ℚ) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ ℕ) & ⊢ (𝜑 → ¬ (𝐴 = 𝐸 ∧ 𝐵 = 𝐹)) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶) & ⊢ (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶) & ⊢ (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) & ⊢ (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) | ||
Theorem | pellex 42036* | Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1) | ||
Syntax | csquarenn 42037 | Extend class notation to include the set of square positive integers. |
class ◻NN | ||
Syntax | cpell1qr 42038 | Extend class notation to include the class of quadrant-1 Pell solutions. |
class Pell1QR | ||
Syntax | cpell1234qr 42039 | Extend class notation to include the class of any-quadrant Pell solutions. |
class Pell1234QR | ||
Syntax | cpell14qr 42040 | Extend class notation to include the class of positive Pell solutions. |
class Pell14QR | ||
Syntax | cpellfund 42041 | Extend class notation to include the Pell-equation fundamental solution function. |
class PellFund | ||
Definition | df-squarenn 42042 | Define the set of square positive integers. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ◻NN = {𝑥 ∈ ℕ ∣ (√‘𝑥) ∈ ℚ} | ||
Definition | df-pell1qr 42043* | Define the solutions of a Pell equation in the first quadrant. To avoid pair pain, we represent this via the canonical embedding into the reals. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell1QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pell14qr 42044* | Define the positive solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pell1234qr 42045* | Define the general solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell1234QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pellfund 42046* | A function mapping Pell discriminants to the corresponding fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
⊢ PellFund = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) | ||
Theorem | pell1qrval 42047* | Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell1qr 42048* | Membership in a first-quadrant Pell solution set. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell14qrval 42049* | Value of the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell14qr 42050* | Membership in the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell1234qrval 42051* | Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell1234qr 42052* | Membership in the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell1234qrre 42053 | General Pell solutions are (coded as) real numbers. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
Theorem | pell1234qrne0 42054 | No solution to a Pell equation is zero. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0) | ||
Theorem | pell1234qrreccl 42055 | General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷)) | ||
Theorem | pell1234qrmulcl 42056 | General solutions of the Pell equation are closed under multiplication. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷)) | ||
Theorem | pell14qrss1234 42057 | A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | ||
Theorem | pell14qrre 42058 | A positive Pell solution is a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
Theorem | pell14qrne0 42059 | A positive Pell solution is a nonzero number. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0) | ||
Theorem | pell14qrgt0 42060 | A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴) | ||
Theorem | pell14qrrp 42061 | A positive Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+) | ||
Theorem | pell1234qrdich 42062 | A general Pell solution is either a positive solution, or its negation is. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) | ||
Theorem | elpell14qr2 42063 | A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) | ||
Theorem | pell14qrmulcl 42064 | Positive Pell solutions are closed under multiplication. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrreccl 42065 | Positive Pell solutions are closed under reciprocal. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 / 𝐴) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrdivcl 42066 | Positive Pell solutions are closed under division. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrexpclnn0 42067 | Lemma for pell14qrexpcl 42068. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrexpcl 42068 | Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴↑𝐵) ∈ (Pell14QR‘𝐷)) | ||
Theorem | pell1qrss14 42069 | First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) | ||
Theorem | pell14qrdich 42070 | A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷))) | ||
Theorem | pell1qrge1 42071 | A Pell solution in the first quadrant is at least 1. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴) | ||
Theorem | pell1qr1 42072 | 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷)) | ||
Theorem | elpell1qr2 42073 | The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))) | ||
Theorem | pell1qrgaplem 42074 | Lemma for pell1qrgap 42075. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵))) | ||
Theorem | pell1qrgap 42075 | First-quadrant Pell solutions are bounded away from 1. (This particular bound allows to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
Theorem | pell14qrgap 42076 | Positive Pell solutions are bounded away from 1. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
Theorem | pell14qrgapw 42077 | Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 2 < 𝐴) | ||
Theorem | pellqrexplicit 42078 | Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷)) | ||
Theorem | infmrgelbi 42079* | Any lower bound of a nonempty set of real numbers is less than or equal to its infimum, one-direction version. (Contributed by Stefan O'Rear, 1-Sep-2013.) (Revised by AV, 17-Sep-2020.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥) → 𝐵 ≤ inf(𝐴, ℝ, < )) | ||
Theorem | pellqrex 42080* | There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥) | ||
Theorem | pellfundval 42081* | Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) | ||
Theorem | pellfundre 42082 | The fundamental solution of a Pell equation exists as a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | ||
Theorem | pellfundge 42083 | Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | ||
Theorem | pellfundgt1 42084 | Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) | ||
Theorem | pellfundlb 42085 | A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 15-Sep-2020.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴) | ||
Theorem | pellfundglb 42086* | If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥 ∧ 𝑥 < 𝐴)) | ||
Theorem | pellfundex 42087 |
The fundamental solution as an infimum is itself a solution, showing
that the solution set is discrete.
Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 42077. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)) | ||
Theorem | pellfund14gap 42088 | There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴 ∧ 𝐴 < (PellFund‘𝐷))) → 𝐴 = 1) | ||
Theorem | pellfundrp 42089 | The fundamental Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+) | ||
Theorem | pellfundne1 42090 | The fundamental Pell solution is never 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1) | ||
Section should be obsolete because its contents are covered by section "Logarithms to an arbitrary base" now. | ||
Theorem | reglogcl 42091 | General logarithm is a real number. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbcl 26619 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → ((log‘𝐴) / (log‘𝐵)) ∈ ℝ) | ||
Theorem | reglogltb 42092 | General logarithm preserves "less than". (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logblt 26630 instead. |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 < 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) < ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogleb 42093 | General logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Oct-2014.) (New usage is discouraged.) Use logbleb 26629 instead. |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) ≤ ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogmul 42094 | Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbmul 26623 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴 · 𝐵)) / (log‘𝐶)) = (((log‘𝐴) / (log‘𝐶)) + ((log‘𝐵) / (log‘𝐶)))) | ||
Theorem | reglogexp 42095 | Power law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbzexp 26622 instead. |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴↑𝑁)) / (log‘𝐶)) = (𝑁 · ((log‘𝐴) / (log‘𝐶)))) | ||
Theorem | reglogbas 42096 | General log of the base is 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logbid1 26614 instead. |
⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘𝐶) / (log‘𝐶)) = 1) | ||
Theorem | reglog1 42097 | General log of 1 is 0. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logb1 26615 instead. |
⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘1) / (log‘𝐶)) = 0) | ||
Theorem | reglogexpbas 42098 | General log of a power of the base is the exponent. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbexp 26626 instead. |
⊢ ((𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐶↑𝑁)) / (log‘𝐶)) = 𝑁) | ||
Theorem | pellfund14 42099* | Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥)) | ||
Theorem | pellfund14b 42100* | The positive Pell solutions are precisely the integer powers of the fundamental solution. To get the general solution set (which we will not be using), throw in a copy of Z/2Z. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |