Detailed syntax breakdown of Definition df-prjsp
Step | Hyp | Ref
| Expression |
1 | | cprjsp 40440 |
. 2
class
ℙ𝕣𝕠𝕛 |
2 | | vv |
. . 3
setvar 𝑣 |
3 | | clvec 20364 |
. . 3
class
LVec |
4 | | vb |
. . . 4
setvar 𝑏 |
5 | 2 | cv 1538 |
. . . . . 6
class 𝑣 |
6 | | cbs 16912 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6433 |
. . . . 5
class
(Base‘𝑣) |
8 | | c0g 17150 |
. . . . . . 7
class
0g |
9 | 5, 8 | cfv 6433 |
. . . . . 6
class
(0g‘𝑣) |
10 | 9 | csn 4561 |
. . . . 5
class
{(0g‘𝑣)} |
11 | 7, 10 | cdif 3884 |
. . . 4
class
((Base‘𝑣)
∖ {(0g‘𝑣)}) |
12 | 4 | cv 1538 |
. . . . 5
class 𝑏 |
13 | | vx |
. . . . . . . . 9
setvar 𝑥 |
14 | 13, 4 | wel 2107 |
. . . . . . . 8
wff 𝑥 ∈ 𝑏 |
15 | | vy |
. . . . . . . . 9
setvar 𝑦 |
16 | 15, 4 | wel 2107 |
. . . . . . . 8
wff 𝑦 ∈ 𝑏 |
17 | 14, 16 | wa 396 |
. . . . . . 7
wff (𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) |
18 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
19 | | vl |
. . . . . . . . . . 11
setvar 𝑙 |
20 | 19 | cv 1538 |
. . . . . . . . . 10
class 𝑙 |
21 | 15 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
22 | | cvsca 16966 |
. . . . . . . . . . 11
class
·𝑠 |
23 | 5, 22 | cfv 6433 |
. . . . . . . . . 10
class (
·𝑠 ‘𝑣) |
24 | 20, 21, 23 | co 7275 |
. . . . . . . . 9
class (𝑙(
·𝑠 ‘𝑣)𝑦) |
25 | 18, 24 | wceq 1539 |
. . . . . . . 8
wff 𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦) |
26 | | csca 16965 |
. . . . . . . . . 10
class
Scalar |
27 | 5, 26 | cfv 6433 |
. . . . . . . . 9
class
(Scalar‘𝑣) |
28 | 27, 6 | cfv 6433 |
. . . . . . . 8
class
(Base‘(Scalar‘𝑣)) |
29 | 25, 19, 28 | wrex 3065 |
. . . . . . 7
wff
∃𝑙 ∈
(Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦) |
30 | 17, 29 | wa 396 |
. . . . . 6
wff ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦)) |
31 | 30, 13, 15 | copab 5136 |
. . . . 5
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))} |
32 | 12, 31 | cqs 8497 |
. . . 4
class (𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))}) |
33 | 4, 11, 32 | csb 3832 |
. . 3
class
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))}) |
34 | 2, 3, 33 | cmpt 5157 |
. 2
class (𝑣 ∈ LVec ↦
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))})) |
35 | 1, 34 | wceq 1539 |
1
wff
ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))})) |