Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prjsp Structured version   Visualization version   GIF version

Definition df-prjsp 40362
Description: Define the projective space function. In the bijection between 3D lines through the origin and points in the projective plane (see section comment), this is equivalent to making any two 3D points (excluding the origin) equivalent iff one is a multiple of another. This definition does not quite give all the properties needed, since the scalars of a left vector space can be "less dense" than the vectors (for example, equivocating rational multiples of real numbers). Compare df-lsatoms 36917. (Contributed by BJ and SN, 29-Apr-2023.)
Assertion
Ref Expression
df-prjsp ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Distinct variable group:   𝑣,𝑏,𝑥,𝑦,𝑙

Detailed syntax breakdown of Definition df-prjsp
StepHypRef Expression
1 cprjsp 40361 . 2 class ℙ𝕣𝕠𝕛
2 vv . . 3 setvar 𝑣
3 clvec 20279 . . 3 class LVec
4 vb . . . 4 setvar 𝑏
52cv 1538 . . . . . 6 class 𝑣
6 cbs 16840 . . . . . 6 class Base
75, 6cfv 6418 . . . . 5 class (Base‘𝑣)
8 c0g 17067 . . . . . . 7 class 0g
95, 8cfv 6418 . . . . . 6 class (0g𝑣)
109csn 4558 . . . . 5 class {(0g𝑣)}
117, 10cdif 3880 . . . 4 class ((Base‘𝑣) ∖ {(0g𝑣)})
124cv 1538 . . . . 5 class 𝑏
13 vx . . . . . . . . 9 setvar 𝑥
1413, 4wel 2109 . . . . . . . 8 wff 𝑥𝑏
15 vy . . . . . . . . 9 setvar 𝑦
1615, 4wel 2109 . . . . . . . 8 wff 𝑦𝑏
1714, 16wa 395 . . . . . . 7 wff (𝑥𝑏𝑦𝑏)
1813cv 1538 . . . . . . . . 9 class 𝑥
19 vl . . . . . . . . . . 11 setvar 𝑙
2019cv 1538 . . . . . . . . . 10 class 𝑙
2115cv 1538 . . . . . . . . . 10 class 𝑦
22 cvsca 16892 . . . . . . . . . . 11 class ·𝑠
235, 22cfv 6418 . . . . . . . . . 10 class ( ·𝑠𝑣)
2420, 21, 23co 7255 . . . . . . . . 9 class (𝑙( ·𝑠𝑣)𝑦)
2518, 24wceq 1539 . . . . . . . 8 wff 𝑥 = (𝑙( ·𝑠𝑣)𝑦)
26 csca 16891 . . . . . . . . . 10 class Scalar
275, 26cfv 6418 . . . . . . . . 9 class (Scalar‘𝑣)
2827, 6cfv 6418 . . . . . . . 8 class (Base‘(Scalar‘𝑣))
2925, 19, 28wrex 3064 . . . . . . 7 wff 𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)
3017, 29wa 395 . . . . . 6 wff ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))
3130, 13, 15copab 5132 . . . . 5 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}
3212, 31cqs 8455 . . . 4 class (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
334, 11, 32csb 3828 . . 3 class ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
342, 3, 33cmpt 5153 . 2 class (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
351, 34wceq 1539 1 wff ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Colors of variables: wff setvar class
This definition is referenced by:  prjspval  40363
  Copyright terms: Public domain W3C validator