Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prjsp Structured version   Visualization version   GIF version

Definition df-prjsp 42575
Description: Define the projective space function. In the bijection between 3D lines through the origin and points in the projective plane (see section comment), this is equivalent to making any two 3D points (excluding the origin) equivalent iff one is a multiple of another. This definition does not quite give all the properties needed, since the scalars of a left vector space can be "less dense" than the vectors (for example, making equivalent rational multiples of real numbers). Compare df-lsatoms 38954. (Contributed by BJ and SN, 29-Apr-2023.)
Assertion
Ref Expression
df-prjsp ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Distinct variable group:   𝑣,𝑏,𝑥,𝑦,𝑙

Detailed syntax breakdown of Definition df-prjsp
StepHypRef Expression
1 cprjsp 42574 . 2 class ℙ𝕣𝕠𝕛
2 vv . . 3 setvar 𝑣
3 clvec 21024 . . 3 class LVec
4 vb . . . 4 setvar 𝑏
52cv 1539 . . . . . 6 class 𝑣
6 cbs 17138 . . . . . 6 class Base
75, 6cfv 6486 . . . . 5 class (Base‘𝑣)
8 c0g 17361 . . . . . . 7 class 0g
95, 8cfv 6486 . . . . . 6 class (0g𝑣)
109csn 4579 . . . . 5 class {(0g𝑣)}
117, 10cdif 3902 . . . 4 class ((Base‘𝑣) ∖ {(0g𝑣)})
124cv 1539 . . . . 5 class 𝑏
13 vx . . . . . . . . 9 setvar 𝑥
1413, 4wel 2110 . . . . . . . 8 wff 𝑥𝑏
15 vy . . . . . . . . 9 setvar 𝑦
1615, 4wel 2110 . . . . . . . 8 wff 𝑦𝑏
1714, 16wa 395 . . . . . . 7 wff (𝑥𝑏𝑦𝑏)
1813cv 1539 . . . . . . . . 9 class 𝑥
19 vl . . . . . . . . . . 11 setvar 𝑙
2019cv 1539 . . . . . . . . . 10 class 𝑙
2115cv 1539 . . . . . . . . . 10 class 𝑦
22 cvsca 17183 . . . . . . . . . . 11 class ·𝑠
235, 22cfv 6486 . . . . . . . . . 10 class ( ·𝑠𝑣)
2420, 21, 23co 7353 . . . . . . . . 9 class (𝑙( ·𝑠𝑣)𝑦)
2518, 24wceq 1540 . . . . . . . 8 wff 𝑥 = (𝑙( ·𝑠𝑣)𝑦)
26 csca 17182 . . . . . . . . . 10 class Scalar
275, 26cfv 6486 . . . . . . . . 9 class (Scalar‘𝑣)
2827, 6cfv 6486 . . . . . . . 8 class (Base‘(Scalar‘𝑣))
2925, 19, 28wrex 3053 . . . . . . 7 wff 𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)
3017, 29wa 395 . . . . . 6 wff ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))
3130, 13, 15copab 5157 . . . . 5 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}
3212, 31cqs 8631 . . . 4 class (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
334, 11, 32csb 3853 . . 3 class ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
342, 3, 33cmpt 5176 . 2 class (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
351, 34wceq 1540 1 wff ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Colors of variables: wff setvar class
This definition is referenced by:  prjspval  42576
  Copyright terms: Public domain W3C validator