Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prjsp Structured version   Visualization version   GIF version

Definition df-prjsp 42634
Description: Define the projective space function. In the bijection between 3D lines through the origin and points in the projective plane (see section comment), this is equivalent to making any two 3D points (excluding the origin) equivalent iff one is a multiple of another. This definition does not quite give all the properties needed, since the scalars of a left vector space can be "less dense" than the vectors (for example, making equivalent rational multiples of real numbers). Compare df-lsatoms 39014. (Contributed by BJ and SN, 29-Apr-2023.)
Assertion
Ref Expression
df-prjsp ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Distinct variable group:   𝑣,𝑏,𝑥,𝑦,𝑙

Detailed syntax breakdown of Definition df-prjsp
StepHypRef Expression
1 cprjsp 42633 . 2 class ℙ𝕣𝕠𝕛
2 vv . . 3 setvar 𝑣
3 clvec 21034 . . 3 class LVec
4 vb . . . 4 setvar 𝑏
52cv 1540 . . . . . 6 class 𝑣
6 cbs 17117 . . . . . 6 class Base
75, 6cfv 6481 . . . . 5 class (Base‘𝑣)
8 c0g 17340 . . . . . . 7 class 0g
95, 8cfv 6481 . . . . . 6 class (0g𝑣)
109csn 4576 . . . . 5 class {(0g𝑣)}
117, 10cdif 3899 . . . 4 class ((Base‘𝑣) ∖ {(0g𝑣)})
124cv 1540 . . . . 5 class 𝑏
13 vx . . . . . . . . 9 setvar 𝑥
1413, 4wel 2112 . . . . . . . 8 wff 𝑥𝑏
15 vy . . . . . . . . 9 setvar 𝑦
1615, 4wel 2112 . . . . . . . 8 wff 𝑦𝑏
1714, 16wa 395 . . . . . . 7 wff (𝑥𝑏𝑦𝑏)
1813cv 1540 . . . . . . . . 9 class 𝑥
19 vl . . . . . . . . . . 11 setvar 𝑙
2019cv 1540 . . . . . . . . . 10 class 𝑙
2115cv 1540 . . . . . . . . . 10 class 𝑦
22 cvsca 17162 . . . . . . . . . . 11 class ·𝑠
235, 22cfv 6481 . . . . . . . . . 10 class ( ·𝑠𝑣)
2420, 21, 23co 7346 . . . . . . . . 9 class (𝑙( ·𝑠𝑣)𝑦)
2518, 24wceq 1541 . . . . . . . 8 wff 𝑥 = (𝑙( ·𝑠𝑣)𝑦)
26 csca 17161 . . . . . . . . . 10 class Scalar
275, 26cfv 6481 . . . . . . . . 9 class (Scalar‘𝑣)
2827, 6cfv 6481 . . . . . . . 8 class (Base‘(Scalar‘𝑣))
2925, 19, 28wrex 3056 . . . . . . 7 wff 𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)
3017, 29wa 395 . . . . . 6 wff ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))
3130, 13, 15copab 5153 . . . . 5 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}
3212, 31cqs 8621 . . . 4 class (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
334, 11, 32csb 3850 . . 3 class ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
342, 3, 33cmpt 5172 . 2 class (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
351, 34wceq 1541 1 wff ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Colors of variables: wff setvar class
This definition is referenced by:  prjspval  42635
  Copyright terms: Public domain W3C validator