Detailed syntax breakdown of Definition df-prjsp
| Step | Hyp | Ref
| Expression |
| 1 | | cprjsp 42611 |
. 2
class
ℙ𝕣𝕠𝕛 |
| 2 | | vv |
. . 3
setvar 𝑣 |
| 3 | | clvec 21101 |
. . 3
class
LVec |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑣 |
| 6 | | cbs 17247 |
. . . . . 6
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Base‘𝑣) |
| 8 | | c0g 17484 |
. . . . . . 7
class
0g |
| 9 | 5, 8 | cfv 6561 |
. . . . . 6
class
(0g‘𝑣) |
| 10 | 9 | csn 4626 |
. . . . 5
class
{(0g‘𝑣)} |
| 11 | 7, 10 | cdif 3948 |
. . . 4
class
((Base‘𝑣)
∖ {(0g‘𝑣)}) |
| 12 | 4 | cv 1539 |
. . . . 5
class 𝑏 |
| 13 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 14 | 13, 4 | wel 2109 |
. . . . . . . 8
wff 𝑥 ∈ 𝑏 |
| 15 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 16 | 15, 4 | wel 2109 |
. . . . . . . 8
wff 𝑦 ∈ 𝑏 |
| 17 | 14, 16 | wa 395 |
. . . . . . 7
wff (𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) |
| 18 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 19 | | vl |
. . . . . . . . . . 11
setvar 𝑙 |
| 20 | 19 | cv 1539 |
. . . . . . . . . 10
class 𝑙 |
| 21 | 15 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 22 | | cvsca 17301 |
. . . . . . . . . . 11
class
·𝑠 |
| 23 | 5, 22 | cfv 6561 |
. . . . . . . . . 10
class (
·𝑠 ‘𝑣) |
| 24 | 20, 21, 23 | co 7431 |
. . . . . . . . 9
class (𝑙(
·𝑠 ‘𝑣)𝑦) |
| 25 | 18, 24 | wceq 1540 |
. . . . . . . 8
wff 𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦) |
| 26 | | csca 17300 |
. . . . . . . . . 10
class
Scalar |
| 27 | 5, 26 | cfv 6561 |
. . . . . . . . 9
class
(Scalar‘𝑣) |
| 28 | 27, 6 | cfv 6561 |
. . . . . . . 8
class
(Base‘(Scalar‘𝑣)) |
| 29 | 25, 19, 28 | wrex 3070 |
. . . . . . 7
wff
∃𝑙 ∈
(Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦) |
| 30 | 17, 29 | wa 395 |
. . . . . 6
wff ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦)) |
| 31 | 30, 13, 15 | copab 5205 |
. . . . 5
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))} |
| 32 | 12, 31 | cqs 8744 |
. . . 4
class (𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))}) |
| 33 | 4, 11, 32 | csb 3899 |
. . 3
class
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))}) |
| 34 | 2, 3, 33 | cmpt 5225 |
. 2
class (𝑣 ∈ LVec ↦
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))})) |
| 35 | 1, 34 | wceq 1540 |
1
wff
ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))})) |