Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prjsp Structured version   Visualization version   GIF version

Definition df-prjsp 42720
Description: Define the projective space function. In the bijection between 3D lines through the origin and points in the projective plane (see section comment), this is equivalent to making any two 3D points (excluding the origin) equivalent iff one is a multiple of another. This definition does not quite give all the properties needed, since the scalars of a left vector space can be "less dense" than the vectors (for example, making equivalent rational multiples of real numbers). Compare df-lsatoms 39095. (Contributed by BJ and SN, 29-Apr-2023.)
Assertion
Ref Expression
df-prjsp ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Distinct variable group:   𝑣,𝑏,𝑥,𝑦,𝑙

Detailed syntax breakdown of Definition df-prjsp
StepHypRef Expression
1 cprjsp 42719 . 2 class ℙ𝕣𝕠𝕛
2 vv . . 3 setvar 𝑣
3 clvec 21038 . . 3 class LVec
4 vb . . . 4 setvar 𝑏
52cv 1540 . . . . . 6 class 𝑣
6 cbs 17122 . . . . . 6 class Base
75, 6cfv 6486 . . . . 5 class (Base‘𝑣)
8 c0g 17345 . . . . . . 7 class 0g
95, 8cfv 6486 . . . . . 6 class (0g𝑣)
109csn 4575 . . . . 5 class {(0g𝑣)}
117, 10cdif 3895 . . . 4 class ((Base‘𝑣) ∖ {(0g𝑣)})
124cv 1540 . . . . 5 class 𝑏
13 vx . . . . . . . . 9 setvar 𝑥
1413, 4wel 2114 . . . . . . . 8 wff 𝑥𝑏
15 vy . . . . . . . . 9 setvar 𝑦
1615, 4wel 2114 . . . . . . . 8 wff 𝑦𝑏
1714, 16wa 395 . . . . . . 7 wff (𝑥𝑏𝑦𝑏)
1813cv 1540 . . . . . . . . 9 class 𝑥
19 vl . . . . . . . . . . 11 setvar 𝑙
2019cv 1540 . . . . . . . . . 10 class 𝑙
2115cv 1540 . . . . . . . . . 10 class 𝑦
22 cvsca 17167 . . . . . . . . . . 11 class ·𝑠
235, 22cfv 6486 . . . . . . . . . 10 class ( ·𝑠𝑣)
2420, 21, 23co 7352 . . . . . . . . 9 class (𝑙( ·𝑠𝑣)𝑦)
2518, 24wceq 1541 . . . . . . . 8 wff 𝑥 = (𝑙( ·𝑠𝑣)𝑦)
26 csca 17166 . . . . . . . . . 10 class Scalar
275, 26cfv 6486 . . . . . . . . 9 class (Scalar‘𝑣)
2827, 6cfv 6486 . . . . . . . 8 class (Base‘(Scalar‘𝑣))
2925, 19, 28wrex 3057 . . . . . . 7 wff 𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)
3017, 29wa 395 . . . . . 6 wff ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))
3130, 13, 15copab 5155 . . . . 5 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}
3212, 31cqs 8627 . . . 4 class (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
334, 11, 32csb 3846 . . 3 class ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))})
342, 3, 33cmpt 5174 . 2 class (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
351, 34wceq 1541 1 wff ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
Colors of variables: wff setvar class
This definition is referenced by:  prjspval  42721
  Copyright terms: Public domain W3C validator