Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval Structured version   Visualization version   GIF version

Theorem prjspval 42576
Description: Value of the projective space function, which is also known as the projectivization of 𝑉. (Contributed by Steven Nguyen, 29-Apr-2023.)
Hypotheses
Ref Expression
prjspval.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspval.x · = ( ·𝑠𝑉)
prjspval.s 𝑆 = (Scalar‘𝑉)
prjspval.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspval (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Distinct variable group:   𝑥,𝑙,𝑦,𝑉
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   · (𝑥,𝑦,𝑙)   𝐾(𝑥,𝑦,𝑙)

Proof of Theorem prjspval
Dummy variables 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6839 . . . . 5 (Base‘𝑣) ∈ V
21difexi 5272 . . . 4 ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V
32a1i 11 . . 3 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V)
4 fveq2 6826 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘𝑣) = (Base‘𝑉))
5 fveq2 6826 . . . . . . . . . 10 (𝑣 = 𝑉 → (0g𝑣) = (0g𝑉))
65sneqd 4591 . . . . . . . . 9 (𝑣 = 𝑉 → {(0g𝑣)} = {(0g𝑉)})
74, 6difeq12d 4080 . . . . . . . 8 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = ((Base‘𝑉) ∖ {(0g𝑉)}))
8 prjspval.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
97, 8eqtr4di 2782 . . . . . . 7 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = 𝐵)
109eqeq2d 2740 . . . . . 6 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) ↔ 𝑏 = 𝐵))
1110biimpd 229 . . . . 5 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) → 𝑏 = 𝐵))
1211imp 406 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → 𝑏 = 𝐵)
1311imdistani 568 . . . . . 6 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑣 = 𝑉𝑏 = 𝐵))
14 eleq2 2817 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥𝑏𝑥𝐵))
15 eleq2 2817 . . . . . . . 8 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
1614, 15anbi12d 632 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥𝑏𝑦𝑏) ↔ (𝑥𝐵𝑦𝐵)))
17 fveq2 6826 . . . . . . . . . . 11 (𝑣 = 𝑉 → (Scalar‘𝑣) = (Scalar‘𝑉))
18 prjspval.s . . . . . . . . . . 11 𝑆 = (Scalar‘𝑉)
1917, 18eqtr4di 2782 . . . . . . . . . 10 (𝑣 = 𝑉 → (Scalar‘𝑣) = 𝑆)
2019fveq2d 6830 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = (Base‘𝑆))
21 prjspval.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
2220, 21eqtr4di 2782 . . . . . . . 8 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = 𝐾)
23 fveq2 6826 . . . . . . . . . . 11 (𝑣 = 𝑉 → ( ·𝑠𝑣) = ( ·𝑠𝑉))
24 prjspval.x . . . . . . . . . . 11 · = ( ·𝑠𝑉)
2523, 24eqtr4di 2782 . . . . . . . . . 10 (𝑣 = 𝑉 → ( ·𝑠𝑣) = · )
2625oveqd 7370 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑙( ·𝑠𝑣)𝑦) = (𝑙 · 𝑦))
2726eqeq2d 2740 . . . . . . . 8 (𝑣 = 𝑉 → (𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ 𝑥 = (𝑙 · 𝑦)))
2822, 27rexeqbidv 3311 . . . . . . 7 (𝑣 = 𝑉 → (∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)))
2916, 28bi2anan9r 639 . . . . . 6 ((𝑣 = 𝑉𝑏 = 𝐵) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3013, 29syl 17 . . . . 5 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3130opabbidv 5161 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
3212, 31qseq12d 42212 . . 3 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
333, 32csbied 3889 . 2 (𝑣 = 𝑉((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
34 df-prjsp 42575 . 2 ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
35 fvex 6839 . . . . 5 (Base‘𝑉) ∈ V
3635difexi 5272 . . . 4 ((Base‘𝑉) ∖ {(0g𝑉)}) ∈ V
378, 36eqeltri 2824 . . 3 𝐵 ∈ V
3837qsex 8707 . 2 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}) ∈ V
3933, 34, 38fvmpt 6934 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  csb 3853  cdif 3902  {csn 4579  {copab 5157  cfv 6486  (class class class)co 7353   / cqs 8631  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  LVecclvec 21024  ℙ𝕣𝕠𝕛cprjsp 42574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-ec 8634  df-qs 8638  df-prjsp 42575
This theorem is referenced by:  prjspval2  42586  prjspnval2  42591
  Copyright terms: Public domain W3C validator