Step | Hyp | Ref
| Expression |
1 | | fvex 6787 |
. . . . 5
⊢
(Base‘𝑣)
∈ V |
2 | 1 | difexi 5252 |
. . . 4
⊢
((Base‘𝑣)
∖ {(0g‘𝑣)}) ∈ V |
3 | 2 | a1i 11 |
. . 3
⊢ (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g‘𝑣)}) ∈ V) |
4 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → (Base‘𝑣) = (Base‘𝑉)) |
5 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑉 → (0g‘𝑣) = (0g‘𝑉)) |
6 | 5 | sneqd 4573 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → {(0g‘𝑣)} = {(0g‘𝑉)}) |
7 | 4, 6 | difeq12d 4058 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g‘𝑣)}) = ((Base‘𝑉) ∖
{(0g‘𝑉)})) |
8 | | prjspval.b |
. . . . . . . 8
⊢ 𝐵 = ((Base‘𝑉) ∖
{(0g‘𝑉)}) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g‘𝑣)}) = 𝐵) |
10 | 9 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g‘𝑣)}) ↔ 𝑏 = 𝐵)) |
11 | 10 | biimpd 228 |
. . . . 5
⊢ (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g‘𝑣)}) → 𝑏 = 𝐵)) |
12 | 11 | imp 407 |
. . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑏 = ((Base‘𝑣) ∖ {(0g‘𝑣)})) → 𝑏 = 𝐵) |
13 | 11 | imdistani 569 |
. . . . . 6
⊢ ((𝑣 = 𝑉 ∧ 𝑏 = ((Base‘𝑣) ∖ {(0g‘𝑣)})) → (𝑣 = 𝑉 ∧ 𝑏 = 𝐵)) |
14 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝑥 ∈ 𝑏 ↔ 𝑥 ∈ 𝐵)) |
15 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝐵)) |
16 | 14, 15 | anbi12d 631 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
17 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑉 → (Scalar‘𝑣) = (Scalar‘𝑉)) |
18 | | prjspval.s |
. . . . . . . . . . 11
⊢ 𝑆 = (Scalar‘𝑉) |
19 | 17, 18 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑉 → (Scalar‘𝑣) = 𝑆) |
20 | 19 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = (Base‘𝑆)) |
21 | | prjspval.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝑆) |
22 | 20, 21 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = 𝐾) |
23 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑉 → (
·𝑠 ‘𝑣) = ( ·𝑠
‘𝑉)) |
24 | | prjspval.x |
. . . . . . . . . . 11
⊢ · = (
·𝑠 ‘𝑉) |
25 | 23, 24 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑉 → (
·𝑠 ‘𝑣) = · ) |
26 | 25 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → (𝑙( ·𝑠
‘𝑣)𝑦) = (𝑙 · 𝑦)) |
27 | 26 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → (𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦) ↔ 𝑥 = (𝑙 · 𝑦))) |
28 | 22, 27 | rexeqbidv 3337 |
. . . . . . 7
⊢ (𝑣 = 𝑉 → (∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦) ↔ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))) |
29 | 16, 28 | bi2anan9r 637 |
. . . . . 6
⊢ ((𝑣 = 𝑉 ∧ 𝑏 = 𝐵) → (((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦)))) |
30 | 13, 29 | syl 17 |
. . . . 5
⊢ ((𝑣 = 𝑉 ∧ 𝑏 = ((Base‘𝑣) ∖ {(0g‘𝑣)})) → (((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦)))) |
31 | 30 | opabbidv 5140 |
. . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑏 = ((Base‘𝑣) ∖ {(0g‘𝑣)})) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))}) |
32 | 12, 31 | qseq12d 40214 |
. . 3
⊢ ((𝑣 = 𝑉 ∧ 𝑏 = ((Base‘𝑣) ∖ {(0g‘𝑣)})) → (𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))}) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))})) |
33 | 3, 32 | csbied 3870 |
. 2
⊢ (𝑣 = 𝑉 → ⦋((Base‘𝑣) ∖
{(0g‘𝑣)})
/ 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))}) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))})) |
34 | | df-prjsp 40441 |
. 2
⊢
ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))})) |
35 | | fvex 6787 |
. . . . 5
⊢
(Base‘𝑉)
∈ V |
36 | 35 | difexi 5252 |
. . . 4
⊢
((Base‘𝑉)
∖ {(0g‘𝑉)}) ∈ V |
37 | 8, 36 | eqeltri 2835 |
. . 3
⊢ 𝐵 ∈ V |
38 | 37 | qsex 8565 |
. 2
⊢ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))}) ∈ V |
39 | 33, 34, 38 | fvmpt 6875 |
1
⊢ (𝑉 ∈ LVec →
(ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))})) |