Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval Structured version   Visualization version   GIF version

Theorem prjspval 42591
Description: Value of the projective space function, which is also known as the projectivization of 𝑉. (Contributed by Steven Nguyen, 29-Apr-2023.)
Hypotheses
Ref Expression
prjspval.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspval.x · = ( ·𝑠𝑉)
prjspval.s 𝑆 = (Scalar‘𝑉)
prjspval.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspval (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Distinct variable group:   𝑥,𝑙,𝑦,𝑉
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   · (𝑥,𝑦,𝑙)   𝐾(𝑥,𝑦,𝑙)

Proof of Theorem prjspval
Dummy variables 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6871 . . . . 5 (Base‘𝑣) ∈ V
21difexi 5285 . . . 4 ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V
32a1i 11 . . 3 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V)
4 fveq2 6858 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘𝑣) = (Base‘𝑉))
5 fveq2 6858 . . . . . . . . . 10 (𝑣 = 𝑉 → (0g𝑣) = (0g𝑉))
65sneqd 4601 . . . . . . . . 9 (𝑣 = 𝑉 → {(0g𝑣)} = {(0g𝑉)})
74, 6difeq12d 4090 . . . . . . . 8 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = ((Base‘𝑉) ∖ {(0g𝑉)}))
8 prjspval.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
97, 8eqtr4di 2782 . . . . . . 7 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = 𝐵)
109eqeq2d 2740 . . . . . 6 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) ↔ 𝑏 = 𝐵))
1110biimpd 229 . . . . 5 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) → 𝑏 = 𝐵))
1211imp 406 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → 𝑏 = 𝐵)
1311imdistani 568 . . . . . 6 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑣 = 𝑉𝑏 = 𝐵))
14 eleq2 2817 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥𝑏𝑥𝐵))
15 eleq2 2817 . . . . . . . 8 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
1614, 15anbi12d 632 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥𝑏𝑦𝑏) ↔ (𝑥𝐵𝑦𝐵)))
17 fveq2 6858 . . . . . . . . . . 11 (𝑣 = 𝑉 → (Scalar‘𝑣) = (Scalar‘𝑉))
18 prjspval.s . . . . . . . . . . 11 𝑆 = (Scalar‘𝑉)
1917, 18eqtr4di 2782 . . . . . . . . . 10 (𝑣 = 𝑉 → (Scalar‘𝑣) = 𝑆)
2019fveq2d 6862 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = (Base‘𝑆))
21 prjspval.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
2220, 21eqtr4di 2782 . . . . . . . 8 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = 𝐾)
23 fveq2 6858 . . . . . . . . . . 11 (𝑣 = 𝑉 → ( ·𝑠𝑣) = ( ·𝑠𝑉))
24 prjspval.x . . . . . . . . . . 11 · = ( ·𝑠𝑉)
2523, 24eqtr4di 2782 . . . . . . . . . 10 (𝑣 = 𝑉 → ( ·𝑠𝑣) = · )
2625oveqd 7404 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑙( ·𝑠𝑣)𝑦) = (𝑙 · 𝑦))
2726eqeq2d 2740 . . . . . . . 8 (𝑣 = 𝑉 → (𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ 𝑥 = (𝑙 · 𝑦)))
2822, 27rexeqbidv 3320 . . . . . . 7 (𝑣 = 𝑉 → (∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)))
2916, 28bi2anan9r 639 . . . . . 6 ((𝑣 = 𝑉𝑏 = 𝐵) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3013, 29syl 17 . . . . 5 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3130opabbidv 5173 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
3212, 31qseq12d 42227 . . 3 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
333, 32csbied 3898 . 2 (𝑣 = 𝑉((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
34 df-prjsp 42590 . 2 ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
35 fvex 6871 . . . . 5 (Base‘𝑉) ∈ V
3635difexi 5285 . . . 4 ((Base‘𝑉) ∖ {(0g𝑉)}) ∈ V
378, 36eqeltri 2824 . . 3 𝐵 ∈ V
3837qsex 8746 . 2 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}) ∈ V
3933, 34, 38fvmpt 6968 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  csb 3862  cdif 3911  {csn 4589  {copab 5169  cfv 6511  (class class class)co 7387   / cqs 8670  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LVecclvec 21009  ℙ𝕣𝕠𝕛cprjsp 42589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-ec 8673  df-qs 8677  df-prjsp 42590
This theorem is referenced by:  prjspval2  42601  prjspnval2  42606
  Copyright terms: Public domain W3C validator