Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval Structured version   Visualization version   GIF version

Theorem prjspval 40363
Description: Value of the projective space function, which is also known as the projectivization of 𝑉. (Contributed by Steven Nguyen, 29-Apr-2023.)
Hypotheses
Ref Expression
prjspval.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspval.x · = ( ·𝑠𝑉)
prjspval.s 𝑆 = (Scalar‘𝑉)
prjspval.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspval (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Distinct variable group:   𝑥,𝑙,𝑦,𝑉
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   · (𝑥,𝑦,𝑙)   𝐾(𝑥,𝑦,𝑙)

Proof of Theorem prjspval
Dummy variables 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6769 . . . . 5 (Base‘𝑣) ∈ V
21difexi 5247 . . . 4 ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V
32a1i 11 . . 3 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) ∈ V)
4 fveq2 6756 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘𝑣) = (Base‘𝑉))
5 fveq2 6756 . . . . . . . . . 10 (𝑣 = 𝑉 → (0g𝑣) = (0g𝑉))
65sneqd 4570 . . . . . . . . 9 (𝑣 = 𝑉 → {(0g𝑣)} = {(0g𝑉)})
74, 6difeq12d 4054 . . . . . . . 8 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = ((Base‘𝑉) ∖ {(0g𝑉)}))
8 prjspval.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
97, 8eqtr4di 2797 . . . . . . 7 (𝑣 = 𝑉 → ((Base‘𝑣) ∖ {(0g𝑣)}) = 𝐵)
109eqeq2d 2749 . . . . . 6 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) ↔ 𝑏 = 𝐵))
1110biimpd 228 . . . . 5 (𝑣 = 𝑉 → (𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)}) → 𝑏 = 𝐵))
1211imp 406 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → 𝑏 = 𝐵)
1311imdistani 568 . . . . . 6 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑣 = 𝑉𝑏 = 𝐵))
14 eleq2 2827 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥𝑏𝑥𝐵))
15 eleq2 2827 . . . . . . . 8 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
1614, 15anbi12d 630 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥𝑏𝑦𝑏) ↔ (𝑥𝐵𝑦𝐵)))
17 fveq2 6756 . . . . . . . . . . 11 (𝑣 = 𝑉 → (Scalar‘𝑣) = (Scalar‘𝑉))
18 prjspval.s . . . . . . . . . . 11 𝑆 = (Scalar‘𝑉)
1917, 18eqtr4di 2797 . . . . . . . . . 10 (𝑣 = 𝑉 → (Scalar‘𝑣) = 𝑆)
2019fveq2d 6760 . . . . . . . . 9 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = (Base‘𝑆))
21 prjspval.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
2220, 21eqtr4di 2797 . . . . . . . 8 (𝑣 = 𝑉 → (Base‘(Scalar‘𝑣)) = 𝐾)
23 fveq2 6756 . . . . . . . . . . 11 (𝑣 = 𝑉 → ( ·𝑠𝑣) = ( ·𝑠𝑉))
24 prjspval.x . . . . . . . . . . 11 · = ( ·𝑠𝑉)
2523, 24eqtr4di 2797 . . . . . . . . . 10 (𝑣 = 𝑉 → ( ·𝑠𝑣) = · )
2625oveqd 7272 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑙( ·𝑠𝑣)𝑦) = (𝑙 · 𝑦))
2726eqeq2d 2749 . . . . . . . 8 (𝑣 = 𝑉 → (𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ 𝑥 = (𝑙 · 𝑦)))
2822, 27rexeqbidv 3328 . . . . . . 7 (𝑣 = 𝑉 → (∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)))
2916, 28bi2anan9r 636 . . . . . 6 ((𝑣 = 𝑉𝑏 = 𝐵) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3013, 29syl 17 . . . . 5 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
3130opabbidv 5136 . . . 4 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
3212, 31qseq12d 40140 . . 3 ((𝑣 = 𝑉𝑏 = ((Base‘𝑣) ∖ {(0g𝑣)})) → (𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
333, 32csbied 3866 . 2 (𝑣 = 𝑉((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
34 df-prjsp 40362 . 2 ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
35 fvex 6769 . . . . 5 (Base‘𝑉) ∈ V
3635difexi 5247 . . . 4 ((Base‘𝑉) ∖ {(0g𝑉)}) ∈ V
378, 36eqeltri 2835 . . 3 𝐵 ∈ V
3837qsex 8523 . 2 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}) ∈ V
3933, 34, 38fvmpt 6857 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  csb 3828  cdif 3880  {csn 4558  {copab 5132  cfv 6418  (class class class)co 7255   / cqs 8455  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LVecclvec 20279  ℙ𝕣𝕠𝕛cprjsp 40361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-ec 8458  df-qs 8462  df-prjsp 40362
This theorem is referenced by:  prjspval2  40373  prjspnval2  40378
  Copyright terms: Public domain W3C validator