| Metamath
Proof Explorer Theorem List (p. 415 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | djhval2 41401 | Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉) → (𝑋 ∨ 𝑌) = ( ⊥ ‘( ⊥ ‘(𝑋 ∪ 𝑌)))) | ||
| Theorem | djhcl 41402 | Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉)) → (𝑋 ∨ 𝑌) ∈ ran 𝐼) | ||
| Theorem | djhlj 41403 | Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) | ||
| Theorem | djhljjN 41404 | Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) | ||
| Theorem | djhjlj 41405 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑌)))) | ||
| Theorem | djhj 41406 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (◡𝐼‘(𝑋𝐽𝑌)) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑌))) | ||
| Theorem | djhcom 41407 | Subspace join commutes. (Contributed by NM, 8-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
| Theorem | djhspss 41408 | Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘(𝑋 ∪ 𝑌)) ⊆ (𝑋 ∨ 𝑌)) | ||
| Theorem | djhsumss 41409 | Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ⊕ 𝑌) ⊆ (𝑋 ∨ 𝑌)) | ||
| Theorem | dihsumssj 41410 | The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ⊆ (𝐼‘(𝑋 ∨ 𝑌))) | ||
| Theorem | djhunssN 41411 | Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∪ 𝑌) ⊆ (𝑋 ∨ 𝑌)) | ||
| Theorem | dochdmm1 41412 | De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝑋 ∩ 𝑌)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) | ||
| Theorem | djhexmid 41413 | Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 𝑉) | ||
| Theorem | djh01 41414 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋 ∨ { 0 }) = 𝑋) | ||
| Theorem | djh02 41415 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → ({ 0 } ∨ 𝑋) = 𝑋) | ||
| Theorem | djhlsmcl 41416 | A closed subspace sum equals subspace join. (shjshseli 31512 analog.) (Contributed by NM, 13-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝑋 ⊕ 𝑌) ∈ ran 𝐼 ↔ (𝑋 ⊕ 𝑌) = (𝑋 ∨ 𝑌))) | ||
| Theorem | djhcvat42 41417* | A covering property. (cvrat42 39446 analog.) (Contributed by NM, 17-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ((𝑆 ≠ { 0 } ∧ (𝑁‘{𝑋}) ⊆ (𝑆 ∨ (𝑁‘{𝑌}))) → ∃𝑧 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) ∨ (𝑁‘{𝑌}))))) | ||
| Theorem | dihjatb 41418 | Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjatc 41419 | Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑃)) = ((𝐼‘𝑋) ⊕ (𝐼‘𝑃))) | ||
| Theorem | dihjatcclem1 41420 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = (((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) ⊕ (𝐼‘𝑉))) | ||
| Theorem | dihjatcclem2 41421 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) & ⊢ (𝜑 → (𝐼‘𝑉) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjatcclem3 41422* | Lemma for dihjatcc 41424. (Contributed by NM, 28-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) & ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) & ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) ⇒ ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) | ||
| Theorem | dihjatcclem4 41423* | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) & ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) & ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) & ⊢ 𝑁 = (𝑎 ∈ 𝐸 ↦ (𝑑 ∈ 𝑇 ↦ ◡(𝑎‘𝑑))) & ⊢ 0 = (𝑑 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑑 ∈ 𝑇 ↦ ((𝑎‘𝑑) ∘ (𝑏‘𝑑)))) ⇒ ⊢ (𝜑 → (𝐼‘𝑉) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjatcc 41424 | Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjat 41425 | Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihprrnlem1N 41426 | Lemma for dihprrn 41428, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ (𝜑 → (◡𝐼‘(𝑁‘{𝑋})) ≤ 𝑊) & ⊢ (𝜑 → ¬ (◡𝐼‘(𝑁‘{𝑌})) ≤ 𝑊) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼) | ||
| Theorem | dihprrnlem2 41427 | Lemma for dihprrn 41428. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼) | ||
| Theorem | dihprrn 41428 | The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼) | ||
| Theorem | djhlsmat 41429 | The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn 41428; should we directly use dihjat 41425? (Contributed by NM, 13-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{𝑋}) ∨ (𝑁‘{𝑌}))) | ||
| Theorem | dihjat1lem 41430 | Subspace sum of a closed subspace and an atom. (pmapjat1 39855 analog.) TODO: merge into dihjat1 41431? (Contributed by NM, 18-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) | ||
| Theorem | dihjat1 41431 | Subspace sum of a closed subspace and an atom. (pmapjat1 39855 analog.) (Contributed by NM, 1-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) | ||
| Theorem | dihsmsprn 41432 | Subspace sum of a closed subspace and the span of a singleton. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ⊕ (𝑁‘{𝑇})) ∈ ran 𝐼) | ||
| Theorem | dihjat2 41433 | The subspace sum of a closed subspace and an atom is the same as their subspace join. (Contributed by NM, 1-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑄) = (𝑋 ⊕ 𝑄)) | ||
| Theorem | dihjat3 41434 | Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑃)) = ((𝐼‘𝑋) ⊕ (𝐼‘𝑃))) | ||
| Theorem | dihjat4 41435 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ⊕ 𝑄) = (𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)))) | ||
| Theorem | dihjat6 41436 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (◡𝐼‘(𝑋 ⊕ 𝑄)) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄))) | ||
| Theorem | dihsmsnrn 41437 | The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ ran 𝐼) | ||
| Theorem | dihsmatrn 41438 | The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at https://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 41433. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ⊕ 𝑄) ∈ ran 𝐼) | ||
| Theorem | dihjat5N 41439 | Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑃) = (◡𝐼‘((𝐼‘𝑋) ⊕ (𝐼‘𝑃)))) | ||
| Theorem | dvh4dimat 41440* | There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ((𝑃 ⊕ 𝑄) ⊕ 𝑅)) | ||
| Theorem | dvh3dimatN 41441* | There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ (𝑃 ⊕ 𝑄)) | ||
| Theorem | dvh2dimatN 41442* | Given an atom, there exists another. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 𝑠 ≠ 𝑃) | ||
| Theorem | dvh1dimat 41443* | There exists an atom. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∃𝑠 𝑠 ∈ 𝐴) | ||
| Theorem | dvh1dim 41444* | There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑧 ≠ 0 ) | ||
| Theorem | dvh4dimlem 41445* | Lemma for dvh4dimN 41449. (Contributed by NM, 22-May-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ (𝜑 → 𝑍 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) | ||
| Theorem | dvhdimlem 41446* | Lemma for dvh2dim 41447 and dvh3dim 41448. TODO: make this obsolete and use dvh4dimlem 41445 directly? (Contributed by NM, 24-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | dvh2dim 41447* | There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) | ||
| Theorem | dvh3dim 41448* | There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | dvh4dimN 41449* | There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) | ||
| Theorem | dvh3dim2 41450* | There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | ||
| Theorem | dvh3dim3N 41451* | There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 41450 everywhere. If this one is needed, make dvh3dim2 41450 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))) | ||
| Theorem | dochsnnz 41452 | The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ { 0 }) | ||
| Theorem | dochsatshp 41453 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014.) (Revised by Mario Carneiro, 1-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝑌) | ||
| Theorem | dochsatshpb 41454 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 29-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ( ⊥ ‘𝑄) ∈ 𝑌)) | ||
| Theorem | dochsnshp 41455 | The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ 𝑌) | ||
| Theorem | dochshpsat 41456 | A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) | ||
| Theorem | dochkrsat 41457 | The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ≠ { 0 } ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴)) | ||
| Theorem | dochkrsat2 41458 | The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴)) | ||
| Theorem | dochsat0 41459 | The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴 ∨ ( ⊥ ‘(𝐿‘𝐺)) = { 0 })) | ||
| Theorem | dochkrsm 41460 | The subspace sum of a closed subspace and a kernel orthocomplement is closed. (djhlsmcl 41416 can be used to convert sum to join.) (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘(𝐿‘𝐺))) ∈ ran 𝐼) | ||
| Theorem | dochexmidat 41461 | Special case of excluded middle for the singleton of a vector. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (( ⊥ ‘{𝑋}) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
| Theorem | dochexmidlem1 41462 | Lemma for dochexmid 41470. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 𝑞 ≠ 𝑟) | ||
| Theorem | dochexmidlem2 41463 | Lemma for dochexmid 41470. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) & ⊢ (𝜑 → 𝑝 ⊆ (𝑟 ⊕ 𝑞)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
| Theorem | dochexmidlem3 41464 | Lemma for dochexmid 41470. Use atom exchange lsatexch1 39047 to swap 𝑝 and 𝑞. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) & ⊢ (𝜑 → 𝑞 ⊆ (𝑟 ⊕ 𝑝)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
| Theorem | dochexmidlem4 41465 | Lemma for dochexmid 41470. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
| Theorem | dochexmidlem5 41466 | Lemma for dochexmid 41470. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → (( ⊥ ‘𝑋) ∩ 𝑀) = { 0 }) | ||
| Theorem | dochexmidlem6 41467 | Lemma for dochexmid 41470. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → 𝑀 = 𝑋) | ||
| Theorem | dochexmidlem7 41468 | Lemma for dochexmid 41470. Contradict dochexmidlem6 41467. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → 𝑀 ≠ 𝑋) | ||
| Theorem | dochexmidlem8 41469 | Lemma for dochexmid 41470. The contradiction of dochexmidlem6 41467 and dochexmidlem7 41468 shows that there can be no atom 𝑝 that is not in 𝑋 + ( ⊥ ‘𝑋), which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) | ||
| Theorem | dochexmid 41470 | Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 41379. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. (pexmidALTN 39980 analog.) (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) | ||
| Theorem | dochsnkrlem1 41471 | Lemma for dochsnkr 41474. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) | ||
| Theorem | dochsnkrlem2 41472 | Lemma for dochsnkr 41474. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ 𝐴 = (LSAtoms‘𝑈) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴) | ||
| Theorem | dochsnkrlem3 41473 | Lemma for dochsnkr 41474. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | ||
| Theorem | dochsnkr 41474 | A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) | ||
| Theorem | dochsnkr2 41475* | Kernel of the explicit functional 𝐺 determined by a nonzero vector 𝑋. Compare the more general lshpkr 39118. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) | ||
| Theorem | dochsnkr2cl 41476* | The 𝑋 determining functional 𝐺 belongs to the atom formed by the orthocomplement of the kernel. (Contributed by NM, 4-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | ||
| Theorem | dochflcl 41477* | Closure of the explicit functional 𝐺 determined by a nonzero vector 𝑋. Compare the more general lshpkrcl 39117. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
| Theorem | dochfl1 41478* | The value of the explicit functional 𝐺 is 1 at the 𝑋 that determines it. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) | ||
| Theorem | dochfln0 41479 | The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≠ 𝑁) | ||
| Theorem | dochkr1 41480* | A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 39071. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })(𝐺‘𝑥) = 1 ) | ||
| Theorem | dochkr1OLDN 41481* | A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 39071. (Contributed by NM, 2-Jan-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺))(𝐺‘𝑥) = 1 ) | ||
| Syntax | clpoN 41482 | Extend class notation with all polarities of a left module or left vector space. |
| class LPol | ||
| Definition | df-lpolN 41483* | Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.) |
| ⊢ LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) | ||
| Theorem | lpolsetN 41484* | The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑃 = {𝑜 ∈ (𝑆 ↑m 𝒫 𝑉) ∣ ((𝑜‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 ((𝑜‘𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) | ||
| Theorem | islpolN 41485* | The predicate "is a polarity". (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | ||
| Theorem | islpoldN 41486* | Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) & ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
| Theorem | lpolfN 41487 | Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | ||
| Theorem | lpolvN 41488 | The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | ||
| Theorem | lpolconN 41489 | Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | lpolsatN 41490 | The polarity of an atomic subspace is a hyperplane. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝐻) | ||
| Theorem | lpolpolsatN 41491 | Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑄)) = 𝑄) | ||
| Theorem | dochpolN 41492 | The subspace orthocomplement for the DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑃 = (LPol‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
| Theorem | lcfl1lem 41493* | Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
| Theorem | lcfl1 41494* | Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
| Theorem | lcfl2 41495* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl3 41496* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl4N 41497* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl5 41498* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
| Theorem | lcfl5a 41499 | Property of a functional with a closed kernel. TODO: Make lcfl5 41498 etc. obsolete and rewrite without 𝐶 hypothesis? (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
| Theorem | lcfl6lem 41500* | Lemma for lcfl6 41502. A functional 𝐺 (whose kernel is closed by dochsnkr 41474) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) ⇒ ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |