Home | Metamath
Proof Explorer Theorem List (p. 415 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29277) |
Hilbert Space Explorer
(29278-30800) |
Users' Mathboxes
(30801-46488) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frege14 41401 | Closed form of a deduction based on com3r 87. Proposition 14 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege19 41402 | A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜒 → 𝜃) → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege23 41403 | Syllogism followed by rotation of three antecedents. Proposition 23 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜏 → 𝜑) → (𝜓 → (𝜒 → (𝜏 → 𝜃))))) | ||
Theorem | frege15 41404 | A closed form of com4r 94. Proposition 15 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege21 41405 | Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | ||
Theorem | frege20 41406 | A closed form of syl8 76. Proposition 20 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜃 → 𝜏) → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | axfrege28 41407 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Axiom | ax-frege28 41408 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Theorem | frege29 41409 | Closed form of con3d 152. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | ||
Theorem | frege30 41410 | Commuted, closed form of con3d 152. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | ||
Theorem | axfrege31 41411 | Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Axiom | ax-frege31 41412 | 𝜑 cannot be denied and (at the same time ) ¬ ¬ 𝜑 affirmed. Duplex negatio affirmat. The denial of the denial is affirmation. Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Theorem | frege32 41413 | Deduce con1 146 from con3 153. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||
Theorem | frege33 41414 | If 𝜑 or 𝜓 takes place, then 𝜓 or 𝜑 takes place. Identical to con1 146. Proposition 33 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | ||
Theorem | frege34 41415 | If as a conseqence of the occurrence of the circumstance 𝜑, when the obstacle 𝜓 is removed, 𝜒 takes place, then from the circumstance that 𝜒 does not take place while 𝜑 occurs the occurrence of the obstacle 𝜓 can be inferred. Closed form of con1d 145. Proposition 34 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → 𝜓))) | ||
Theorem | frege35 41416 | Commuted, closed form of con1d 145. Proposition 35 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (¬ 𝜒 → (𝜑 → 𝜓))) | ||
Theorem | frege36 41417 | The case in which 𝜓 is denied, ¬ 𝜑 is affirmed, and 𝜑 is affirmed does not occur. If 𝜑 occurs, then (at least) one of the two, 𝜑 or 𝜓, takes place (no matter what 𝜓 might be). Identical to pm2.24 124. Proposition 36 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege37 41418 | If 𝜒 is a necessary consequence of the occurrence of 𝜓 or 𝜑, then 𝜒 is a necessary consequence of 𝜑 alone. Similar to a closed form of orcs 872. Proposition 37 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → 𝜒) → (𝜑 → 𝜒)) | ||
Theorem | frege38 41419 | Identical to pm2.21 123. Proposition 38 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | ||
Theorem | frege39 41420 | Syllogism between pm2.18 128 and pm2.24 124. Proposition 39 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege40 41421 | Anything implies pm2.18 128. Proposition 40 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → ((¬ 𝜓 → 𝜓) → 𝜓)) | ||
Theorem | axfrege41 41422 | Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Axiom | ax-frege41 41423 | The affirmation of 𝜑 denies the denial of 𝜑. Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Theorem | frege42 41424 | Not not id 22. Proposition 42 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ¬ ¬ (𝜑 → 𝜑) | ||
Theorem | frege43 41425 | If there is a choice only between 𝜑 and 𝜑, then 𝜑 takes place. Identical to pm2.18 128. Proposition 43 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
Theorem | frege44 41426 | Similar to a commuted pm2.62 897. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) | ||
Theorem | frege45 41427 | Deduce pm2.6 190 from con1 146. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) | ||
Theorem | frege46 41428 | If 𝜓 holds when 𝜑 occurs as well as when 𝜑 does not occur, then 𝜓 holds. If 𝜓 or 𝜑 occurs and if the occurrences of 𝜑 has 𝜓 as a necessary consequence, then 𝜓 takes place. Identical to pm2.6 190. Proposition 46 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | ||
Theorem | frege47 41429 | Deduce consequence follows from either path implied by a disjunction. If 𝜑, as well as 𝜓 is sufficient condition for 𝜒 and 𝜓 or 𝜑 takes place, then the proposition 𝜒 holds. Proposition 47 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜒) → ((𝜑 → 𝜒) → 𝜒))) | ||
Theorem | frege48 41430 | Closed form of syllogism with internal disjunction. If 𝜑 is a sufficient condition for the occurrence of 𝜒 or 𝜓 and if 𝜒, as well as 𝜓, is a sufficient condition for 𝜃, then 𝜑 is a sufficient condition for 𝜃. See application in frege101 41542. Proposition 48 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → ((𝜒 → 𝜃) → ((𝜓 → 𝜃) → (𝜑 → 𝜃)))) | ||
Theorem | frege49 41431 | Closed form of deduction with disjunction. Proposition 49 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | ||
Theorem | frege50 41432 | Closed form of jaoi 854. Proposition 50 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((¬ 𝜑 → 𝜒) → 𝜓))) | ||
Theorem | frege51 41433 | Compare with jaod 856. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒)))) | ||
Here we leverage df-ifp 1061 to partition a wff into two that are disjoint with the selector wff. Thus if we are given ⊢ (𝜑 ↔ if-(𝜓, 𝜒, 𝜃)) then we replace the concept (illegal in our notation ) (𝜑‘𝜓) with if-(𝜓, 𝜒, 𝜃) to reason about the values of the "function." Likewise, we replace the similarly illegal concept ∀𝜓𝜑 with (𝜒 ∧ 𝜃). | ||
Theorem | axfrege52a 41434 | Justification for ax-frege52a 41435. (Contributed by RP, 17-Apr-2020.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Axiom | ax-frege52a 41435 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which a proposition controlled by an element for which we substitute the content of 𝜑 is affirmed (in this specific case the identity logical function) and the same proposition, this time where we substituted the content of 𝜓, is denied does not take place. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Theorem | frege52aid 41436 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which 𝜑 is affirmed and 𝜓 is denied does not take place. Identical to biimp 214. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | frege53aid 41437 | Specialization of frege53a 41438. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) | ||
Theorem | frege53a 41438 | Lemma for frege55a 41446. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜃, 𝜒) → ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜃, 𝜒))) | ||
Theorem | axfrege54a 41439 | Justification for ax-frege54a 41440. Identical to biid 260. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 ↔ 𝜑) | ||
Axiom | ax-frege54a 41440 | Reflexive equality of wffs. The content of 𝜑 is identical with the content of 𝜑. Part of Axiom 54 of [Frege1879] p. 50. Identical to biid 260. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜑) | ||
Theorem | frege54cor0a 41441 | Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege54cor1a 41442 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ if-(𝜑, 𝜑, ¬ 𝜑) | ||
Theorem | frege55aid 41443 | Lemma for frege57aid 41450. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
Theorem | frege55lem1a 41444 | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓 ↔ 𝜑))) | ||
Theorem | frege55lem2a 41445 | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege55a 41446 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege55cor1a 41447 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
Theorem | frege56aid 41448 | Lemma for frege57aid 41450. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓))) | ||
Theorem | frege56a 41449 | Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓 ↔ 𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))) | ||
Theorem | frege57aid 41450 | This is the all imporant formula which allows us to apply Frege-style definitions and explore their consequences. A closed form of biimpri 227. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | ||
Theorem | frege57a 41451 | Analogue of frege57aid 41450. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | ||
Theorem | axfrege58a 41452 | Identical to anifp 1069. Justification for ax-frege58a 41453. (Contributed by RP, 28-Mar-2020.) |
⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
Axiom | ax-frege58a 41453 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2071. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | frege58acor 41454 | Lemma for frege59a 41455. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | frege59a 41455 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 41391 incorrectly referenced where frege30 41410 is in the original. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) | ||
Theorem | frege60a 41456 | Swap antecedents of ax-frege58a 41453. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege61a 41457 | Lemma for frege65a 41461. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) | ||
Theorem | frege62a 41458 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2664 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | frege63a 41459 | Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) | ||
Theorem | frege64a 41460 | Lemma for frege65a 41461. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜃, 𝜁)))) | ||
Theorem | frege65a 41461 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2664 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege66a 41462 | Swap antecedents of frege65a 41461. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege67a 41463 | Lemma for frege68a 41464. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) | ||
Theorem | frege68a 41464 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))) | ||
Theorem | axfrege52c 41465 | Justification for ax-frege52c 41466. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
Axiom | ax-frege52c 41466 | One side of dfsbcq 3719. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
Theorem | frege52b 41467 | The case when the content of 𝑥 is identical with the content of 𝑦 and in which a proposition controlled by an element for which we substitute the content of 𝑥 is affirmed and the same proposition, this time where we substitute the content of 𝑦, is denied does not take place. In [𝑥 / 𝑧]𝜑, 𝑥 can also occur in other than the argument (𝑧) places. Hence 𝑥 may still be contained in [𝑦 / 𝑧]𝜑. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | ||
Theorem | frege53b 41468 | Lemma for frege102 (via frege92 41533). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) | ||
Theorem | axfrege54c 41469 | Reflexive equality of classes. Identical to eqid 2738. Justification for ax-frege54c 41470. (Contributed by RP, 24-Dec-2019.) |
⊢ 𝐴 = 𝐴 | ||
Axiom | ax-frege54c 41470 | Reflexive equality of sets (as classes). Part of Axiom 54 of [Frege1879] p. 50. Identical to eqid 2738. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ 𝐴 = 𝐴 | ||
Theorem | frege54b 41471 | Reflexive equality of sets. The content of 𝑥 is identical with the content of 𝑥. Part of Axiom 54 of [Frege1879] p. 50. Slightly specialized version of eqid 2738. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | frege54cor1b 41472 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) |
⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | ||
Theorem | frege55lem1b 41473* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → [𝑥 / 𝑦]𝑦 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) | ||
Theorem | frege55lem2b 41474 | Lemma for frege55b 41475. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | ||
Theorem | frege55b 41475 |
Lemma for frege57b 41477. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2762 incorporates eqcom 2745 which is stronger than this proposition which is identical to equcomi 2020. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | frege56b 41476 | Lemma for frege57b 41477. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) | ||
Theorem | frege57b 41477 | Analogue of frege57aid 41450. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | ||
Theorem | axfrege58b 41478 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2071. Justification for ax-frege58b 41479. (Contributed by RP, 28-Mar-2020.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Axiom | ax-frege58b 41479 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2071. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Theorem | frege58bid 41480 | If ∀𝑥𝜑 is affirmed, 𝜑 cannot be denied. Identical to sp 2176. See ax-frege58b 41479 and frege58c 41499 for versions which more closely track the original. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | frege58bcor 41481 | Lemma for frege59b 41482. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | frege59b 41482 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 41391 incorrectly referenced where frege30 41410 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (¬ [𝑦 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | frege60b 41483 | Swap antecedents of ax-frege58b 41479. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝑦 / 𝑥]𝜓 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege61b 41484 | Lemma for frege65b 41488. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) | ||
Theorem | frege62b 41485 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2664 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) | ||
Theorem | frege63b 41486 | Lemma for frege91 41532. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege64b 41487 | Lemma for frege65b 41488. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) | ||
Theorem | frege65b 41488 |
A kind of Aristotelian inference. This judgement replaces the mode of
inference barbara 2664 when the minor premise has a general context.
Proposition 65 of [Frege1879] p. 53.
In Frege care is taken to point out that the variables in the first clauses are independent of each other and of the final term so another valid translation could be : ⊢ (∀𝑥([𝑥 / 𝑎]𝜑 → [𝑥 / 𝑏]𝜓) → (∀𝑦([𝑦 / 𝑏]𝜓 → [𝑦 / 𝑐]𝜒) → ([𝑧 / 𝑎]𝜑 → [𝑧 / 𝑐]𝜒))). But that is perhaps too pedantic a translation for this exploration. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege66b 41489 | Swap antecedents of frege65b 41488. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) | ||
Theorem | frege67b 41490 | Lemma for frege68b 41491. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) | ||
Theorem | frege68b 41491 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
Begriffsschrift Chapter II with equivalence of classes (where they are sets). | ||
Theorem | frege53c 41492 | Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵 → [𝐵 / 𝑥]𝜑)) | ||
Theorem | frege54cor1c 41493* | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 | ||
Theorem | frege55lem1c 41494* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) | ||
Theorem | frege55lem2c 41495* | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) | ||
Theorem | frege55c 41496 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) | ||
Theorem | frege56c 41497* | Lemma for frege57c 41498. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) | ||
Theorem | frege57c 41498* | Swap order of implication in ax-frege52c 41466. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | frege58c 41499 | Principle related to sp 2176. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) | ||
Theorem | frege59c 41500 |
A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 41391 incorrectly referenced where frege30 41410 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |