Home | Metamath
Proof Explorer Theorem List (p. 415 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | snhesn 41401 | Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
⊢ {〈𝐴, 𝐴〉} hereditary {𝐵} | ||
Theorem | idhe 41402 | The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
⊢ I hereditary 𝐴 | ||
Theorem | psshepw 41403 | The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ ◡ [⊊] hereditary 𝒫 𝐴 | ||
Theorem | sshepw 41404 | The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 | ||
Axiom | ax-frege1 41405 | The case in which 𝜑 is denied, 𝜓 is affirmed, and 𝜑 is affirmed is excluded. This is evident since 𝜑 cannot at the same time be denied and affirmed. Axiom 1 of [Frege1879] p. 26. Identical to ax-1 6. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Axiom | ax-frege2 41406 | If a proposition 𝜒 is a necessary consequence of two propositions 𝜓 and 𝜑 and one of those, 𝜓, is in turn a necessary consequence of the other, 𝜑, then the proposition 𝜒 is a necessary consequence of the latter one, 𝜑, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | rp-simp2-frege 41407 | Simplification of triple conjunction. Compare with simp2 1136. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
Theorem | rp-simp2 41408 | Simplification of triple conjunction. Identical to simp2 1136. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | ||
Theorem | rp-frege3g 41409 |
Add antecedent to ax-frege2 41406. More general statement than frege3 41410.
Like ax-frege2 41406, it is essentially a closed form of mpd 15,
however it
has an extra antecedent.
It would be more natural to prove from a1i 11 and ax-frege2 41406 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege3 41410 | Add antecedent to ax-frege2 41406. Special case of rp-frege3g 41409. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜑 → 𝜓)) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | rp-misc1-frege 41411 | Double-use of ax-frege2 41406. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
Theorem | rp-frege24 41412 | Introducing an embedded antecedent. Alternate proof for frege24 41430. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
Theorem | rp-frege4g 41413 | Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege4 41414 | Special case of closed form of a2d 29. Special case of rp-frege4g 41413. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | frege5 41415 | A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
Theorem | rp-7frege 41416 | Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | ||
Theorem | rp-4frege 41417 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) | ||
Theorem | rp-6frege 41418 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ((𝜓 → ((𝜒 → 𝜓) → 𝜃)) → (𝜓 → 𝜃))) | ||
Theorem | rp-8frege 41419 | Eliminate antecedent when it is implied by previous antecedent. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → ((𝜒 → 𝜓) → 𝜃))) → (𝜑 → (𝜓 → 𝜃))) | ||
Theorem | rp-frege25 41420 | Closed form for a1dd 50. Alternate route to Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege6 41421 | A closed form of imim2d 57 which is a deduction adding nested antecedents. Proposition 6 of [Frege1879] p. 33. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒)))) | ||
Theorem | axfrege8 41422 |
Swap antecedents. Identical to pm2.04 90. This demonstrates that Axiom 8
of [Frege1879] p. 35 is redundant.
Proof follows closely proof of pm2.04 90 in https://us.metamath.org/mmsolitaire/pmproofs.txt 90, but in the style of Frege's 1879 work. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | frege7 41423 | A closed form of syl6 35. The first antecedent is used to replace the consequent of the second antecedent. Proposition 7 of [Frege1879] p. 34. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜃 → 𝜑)) → (𝜒 → (𝜃 → 𝜓)))) | ||
Axiom | ax-frege8 41424 | Swap antecedents. If two conditions have a proposition as a consequence, their order is immaterial. Third axiom of Frege's 1879 work but identical to pm2.04 90 which can be proved from only ax-mp 5, ax-frege1 41405, and ax-frege2 41406. (Redundant) Axiom 8 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | frege26 41425 | Identical to idd 24. Proposition 26 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜓)) | ||
Theorem | frege27 41426 | We cannot (at the same time) affirm 𝜑 and deny 𝜑. Identical to id 22. Proposition 27 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝜑) | ||
Theorem | frege9 41427 | Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 41415 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
Theorem | frege12 41428 | A closed form of com23 86. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜒 → (𝜓 → 𝜃)))) | ||
Theorem | frege11 41429 | Elimination of a nested antecedent as a partial converse of ja 186. If the proposition that 𝜓 takes place or 𝜑 does not is a sufficient condition for 𝜒, then 𝜓 by itself is a sufficient condition for 𝜒. Identical to jarr 106. Proposition 11 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
Theorem | frege24 41430 | Closed form for a1d 25. Deduction introducing an embedded antecedent. Identical to rp-frege24 41412 which was proved without relying on ax-frege8 41424. Proposition 24 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
Theorem | frege16 41431 | A closed form of com34 91. Proposition 16 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏))))) | ||
Theorem | frege25 41432 | Closed form for a1dd 50. Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege18 41433 | Closed form of a syllogism followed by a swap of antecedents. Proposition 18 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜑) → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege22 41434 | A closed form of com45 97. Proposition 22 of [Frege1879] p. 41. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) → (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃 → 𝜂)))))) | ||
Theorem | frege10 41435 | Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) | ||
Theorem | frege17 41436 | A closed form of com3l 89. Proposition 17 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||
Theorem | frege13 41437 | A closed form of com3r 87. Proposition 13 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜒 → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege14 41438 | Closed form of a deduction based on com3r 87. Proposition 14 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege19 41439 | A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜒 → 𝜃) → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege23 41440 | Syllogism followed by rotation of three antecedents. Proposition 23 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜏 → 𝜑) → (𝜓 → (𝜒 → (𝜏 → 𝜃))))) | ||
Theorem | frege15 41441 | A closed form of com4r 94. Proposition 15 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege21 41442 | Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | ||
Theorem | frege20 41443 | A closed form of syl8 76. Proposition 20 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜃 → 𝜏) → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | axfrege28 41444 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Axiom | ax-frege28 41445 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Theorem | frege29 41446 | Closed form of con3d 152. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | ||
Theorem | frege30 41447 | Commuted, closed form of con3d 152. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | ||
Theorem | axfrege31 41448 | Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Axiom | ax-frege31 41449 | 𝜑 cannot be denied and (at the same time ) ¬ ¬ 𝜑 affirmed. Duplex negatio affirmat. The denial of the denial is affirmation. Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Theorem | frege32 41450 | Deduce con1 146 from con3 153. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||
Theorem | frege33 41451 | If 𝜑 or 𝜓 takes place, then 𝜓 or 𝜑 takes place. Identical to con1 146. Proposition 33 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | ||
Theorem | frege34 41452 | If as a conseqence of the occurrence of the circumstance 𝜑, when the obstacle 𝜓 is removed, 𝜒 takes place, then from the circumstance that 𝜒 does not take place while 𝜑 occurs the occurrence of the obstacle 𝜓 can be inferred. Closed form of con1d 145. Proposition 34 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → 𝜓))) | ||
Theorem | frege35 41453 | Commuted, closed form of con1d 145. Proposition 35 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (¬ 𝜒 → (𝜑 → 𝜓))) | ||
Theorem | frege36 41454 | The case in which 𝜓 is denied, ¬ 𝜑 is affirmed, and 𝜑 is affirmed does not occur. If 𝜑 occurs, then (at least) one of the two, 𝜑 or 𝜓, takes place (no matter what 𝜓 might be). Identical to pm2.24 124. Proposition 36 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege37 41455 | If 𝜒 is a necessary consequence of the occurrence of 𝜓 or 𝜑, then 𝜒 is a necessary consequence of 𝜑 alone. Similar to a closed form of orcs 872. Proposition 37 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → 𝜒) → (𝜑 → 𝜒)) | ||
Theorem | frege38 41456 | Identical to pm2.21 123. Proposition 38 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | ||
Theorem | frege39 41457 | Syllogism between pm2.18 128 and pm2.24 124. Proposition 39 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege40 41458 | Anything implies pm2.18 128. Proposition 40 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → ((¬ 𝜓 → 𝜓) → 𝜓)) | ||
Theorem | axfrege41 41459 | Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Axiom | ax-frege41 41460 | The affirmation of 𝜑 denies the denial of 𝜑. Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Theorem | frege42 41461 | Not not id 22. Proposition 42 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ¬ ¬ (𝜑 → 𝜑) | ||
Theorem | frege43 41462 | If there is a choice only between 𝜑 and 𝜑, then 𝜑 takes place. Identical to pm2.18 128. Proposition 43 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
Theorem | frege44 41463 | Similar to a commuted pm2.62 897. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) | ||
Theorem | frege45 41464 | Deduce pm2.6 190 from con1 146. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) | ||
Theorem | frege46 41465 | If 𝜓 holds when 𝜑 occurs as well as when 𝜑 does not occur, then 𝜓 holds. If 𝜓 or 𝜑 occurs and if the occurrences of 𝜑 has 𝜓 as a necessary consequence, then 𝜓 takes place. Identical to pm2.6 190. Proposition 46 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | ||
Theorem | frege47 41466 | Deduce consequence follows from either path implied by a disjunction. If 𝜑, as well as 𝜓 is sufficient condition for 𝜒 and 𝜓 or 𝜑 takes place, then the proposition 𝜒 holds. Proposition 47 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜒) → ((𝜑 → 𝜒) → 𝜒))) | ||
Theorem | frege48 41467 | Closed form of syllogism with internal disjunction. If 𝜑 is a sufficient condition for the occurrence of 𝜒 or 𝜓 and if 𝜒, as well as 𝜓, is a sufficient condition for 𝜃, then 𝜑 is a sufficient condition for 𝜃. See application in frege101 41579. Proposition 48 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → ((𝜒 → 𝜃) → ((𝜓 → 𝜃) → (𝜑 → 𝜃)))) | ||
Theorem | frege49 41468 | Closed form of deduction with disjunction. Proposition 49 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | ||
Theorem | frege50 41469 | Closed form of jaoi 854. Proposition 50 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((¬ 𝜑 → 𝜒) → 𝜓))) | ||
Theorem | frege51 41470 | Compare with jaod 856. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒)))) | ||
Here we leverage df-ifp 1061 to partition a wff into two that are disjoint with the selector wff. Thus if we are given ⊢ (𝜑 ↔ if-(𝜓, 𝜒, 𝜃)) then we replace the concept (illegal in our notation ) (𝜑‘𝜓) with if-(𝜓, 𝜒, 𝜃) to reason about the values of the "function." Likewise, we replace the similarly illegal concept ∀𝜓𝜑 with (𝜒 ∧ 𝜃). | ||
Theorem | axfrege52a 41471 | Justification for ax-frege52a 41472. (Contributed by RP, 17-Apr-2020.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Axiom | ax-frege52a 41472 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which a proposition controlled by an element for which we substitute the content of 𝜑 is affirmed (in this specific case the identity logical function) and the same proposition, this time where we substituted the content of 𝜓, is denied does not take place. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Theorem | frege52aid 41473 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which 𝜑 is affirmed and 𝜓 is denied does not take place. Identical to biimp 214. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | frege53aid 41474 | Specialization of frege53a 41475. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) | ||
Theorem | frege53a 41475 | Lemma for frege55a 41483. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜃, 𝜒) → ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜃, 𝜒))) | ||
Theorem | axfrege54a 41476 | Justification for ax-frege54a 41477. Identical to biid 260. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 ↔ 𝜑) | ||
Axiom | ax-frege54a 41477 | Reflexive equality of wffs. The content of 𝜑 is identical with the content of 𝜑. Part of Axiom 54 of [Frege1879] p. 50. Identical to biid 260. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜑) | ||
Theorem | frege54cor0a 41478 | Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege54cor1a 41479 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ if-(𝜑, 𝜑, ¬ 𝜑) | ||
Theorem | frege55aid 41480 | Lemma for frege57aid 41487. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
Theorem | frege55lem1a 41481 | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓 ↔ 𝜑))) | ||
Theorem | frege55lem2a 41482 | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege55a 41483 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege55cor1a 41484 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
Theorem | frege56aid 41485 | Lemma for frege57aid 41487. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓))) | ||
Theorem | frege56a 41486 | Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓 ↔ 𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))) | ||
Theorem | frege57aid 41487 | This is the all imporant formula which allows us to apply Frege-style definitions and explore their consequences. A closed form of biimpri 227. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | ||
Theorem | frege57a 41488 | Analogue of frege57aid 41487. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | ||
Theorem | axfrege58a 41489 | Identical to anifp 1069. Justification for ax-frege58a 41490. (Contributed by RP, 28-Mar-2020.) |
⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
Axiom | ax-frege58a 41490 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2072. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | frege58acor 41491 | Lemma for frege59a 41492. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | frege59a 41492 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 41428 incorrectly referenced where frege30 41447 is in the original. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) | ||
Theorem | frege60a 41493 | Swap antecedents of ax-frege58a 41490. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege61a 41494 | Lemma for frege65a 41498. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) | ||
Theorem | frege62a 41495 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2665 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | frege63a 41496 | Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) | ||
Theorem | frege64a 41497 | Lemma for frege65a 41498. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜃, 𝜁)))) | ||
Theorem | frege65a 41498 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2665 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege66a 41499 | Swap antecedents of frege65a 41498. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege67a 41500 | Lemma for frege68a 41501. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |