| Metamath
Proof Explorer Theorem List (p. 415 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | djhcl 41401 | Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉)) → (𝑋 ∨ 𝑌) ∈ ran 𝐼) | ||
| Theorem | djhlj 41402 | Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) | ||
| Theorem | djhljjN 41403 | Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) | ||
| Theorem | djhjlj 41404 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑌)))) | ||
| Theorem | djhj 41405 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (◡𝐼‘(𝑋𝐽𝑌)) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑌))) | ||
| Theorem | djhcom 41406 | Subspace join commutes. (Contributed by NM, 8-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
| Theorem | djhspss 41407 | Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘(𝑋 ∪ 𝑌)) ⊆ (𝑋 ∨ 𝑌)) | ||
| Theorem | djhsumss 41408 | Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ⊕ 𝑌) ⊆ (𝑋 ∨ 𝑌)) | ||
| Theorem | dihsumssj 41409 | The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ⊆ (𝐼‘(𝑋 ∨ 𝑌))) | ||
| Theorem | djhunssN 41410 | Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∪ 𝑌) ⊆ (𝑋 ∨ 𝑌)) | ||
| Theorem | dochdmm1 41411 | De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝑋 ∩ 𝑌)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) | ||
| Theorem | djhexmid 41412 | Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 𝑉) | ||
| Theorem | djh01 41413 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋 ∨ { 0 }) = 𝑋) | ||
| Theorem | djh02 41414 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → ({ 0 } ∨ 𝑋) = 𝑋) | ||
| Theorem | djhlsmcl 41415 | A closed subspace sum equals subspace join. (shjshseli 31429 analog.) (Contributed by NM, 13-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝑋 ⊕ 𝑌) ∈ ran 𝐼 ↔ (𝑋 ⊕ 𝑌) = (𝑋 ∨ 𝑌))) | ||
| Theorem | djhcvat42 41416* | A covering property. (cvrat42 39445 analog.) (Contributed by NM, 17-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ((𝑆 ≠ { 0 } ∧ (𝑁‘{𝑋}) ⊆ (𝑆 ∨ (𝑁‘{𝑌}))) → ∃𝑧 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) ∨ (𝑁‘{𝑌}))))) | ||
| Theorem | dihjatb 41417 | Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjatc 41418 | Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑃)) = ((𝐼‘𝑋) ⊕ (𝐼‘𝑃))) | ||
| Theorem | dihjatcclem1 41419 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = (((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) ⊕ (𝐼‘𝑉))) | ||
| Theorem | dihjatcclem2 41420 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) & ⊢ (𝜑 → (𝐼‘𝑉) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjatcclem3 41421* | Lemma for dihjatcc 41423. (Contributed by NM, 28-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) & ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) & ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) ⇒ ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) | ||
| Theorem | dihjatcclem4 41422* | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) & ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) & ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) & ⊢ 𝑁 = (𝑎 ∈ 𝐸 ↦ (𝑑 ∈ 𝑇 ↦ ◡(𝑎‘𝑑))) & ⊢ 0 = (𝑑 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑑 ∈ 𝑇 ↦ ((𝑎‘𝑑) ∘ (𝑏‘𝑑)))) ⇒ ⊢ (𝜑 → (𝐼‘𝑉) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjatcc 41423 | Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) & ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihjat 41424 | Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihprrnlem1N 41425 | Lemma for dihprrn 41427, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ (𝜑 → (◡𝐼‘(𝑁‘{𝑋})) ≤ 𝑊) & ⊢ (𝜑 → ¬ (◡𝐼‘(𝑁‘{𝑌})) ≤ 𝑊) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼) | ||
| Theorem | dihprrnlem2 41426 | Lemma for dihprrn 41427. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼) | ||
| Theorem | dihprrn 41427 | The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼) | ||
| Theorem | djhlsmat 41428 | The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn 41427; should we directly use dihjat 41424? (Contributed by NM, 13-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{𝑋}) ∨ (𝑁‘{𝑌}))) | ||
| Theorem | dihjat1lem 41429 | Subspace sum of a closed subspace and an atom. (pmapjat1 39854 analog.) TODO: merge into dihjat1 41430? (Contributed by NM, 18-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) | ||
| Theorem | dihjat1 41430 | Subspace sum of a closed subspace and an atom. (pmapjat1 39854 analog.) (Contributed by NM, 1-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) | ||
| Theorem | dihsmsprn 41431 | Subspace sum of a closed subspace and the span of a singleton. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ⊕ (𝑁‘{𝑇})) ∈ ran 𝐼) | ||
| Theorem | dihjat2 41432 | The subspace sum of a closed subspace and an atom is the same as their subspace join. (Contributed by NM, 1-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ∨ = ((joinH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑄) = (𝑋 ⊕ 𝑄)) | ||
| Theorem | dihjat3 41433 | Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑃)) = ((𝐼‘𝑋) ⊕ (𝐼‘𝑃))) | ||
| Theorem | dihjat4 41434 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ⊕ 𝑄) = (𝐼‘((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄)))) | ||
| Theorem | dihjat6 41435 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (◡𝐼‘(𝑋 ⊕ 𝑄)) = ((◡𝐼‘𝑋) ∨ (◡𝐼‘𝑄))) | ||
| Theorem | dihsmsnrn 41436 | The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ ran 𝐼) | ||
| Theorem | dihsmatrn 41437 | The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at https://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 41432. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ⊕ 𝑄) ∈ ran 𝐼) | ||
| Theorem | dihjat5N 41438 | Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑃) = (◡𝐼‘((𝐼‘𝑋) ⊕ (𝐼‘𝑃)))) | ||
| Theorem | dvh4dimat 41439* | There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ((𝑃 ⊕ 𝑄) ⊕ 𝑅)) | ||
| Theorem | dvh3dimatN 41440* | There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ (𝑃 ⊕ 𝑄)) | ||
| Theorem | dvh2dimatN 41441* | Given an atom, there exists another. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐴 𝑠 ≠ 𝑃) | ||
| Theorem | dvh1dimat 41442* | There exists an atom. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∃𝑠 𝑠 ∈ 𝐴) | ||
| Theorem | dvh1dim 41443* | There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑧 ≠ 0 ) | ||
| Theorem | dvh4dimlem 41444* | Lemma for dvh4dimN 41448. (Contributed by NM, 22-May-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ (𝜑 → 𝑍 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) | ||
| Theorem | dvhdimlem 41445* | Lemma for dvh2dim 41446 and dvh3dim 41447. TODO: make this obsolete and use dvh4dimlem 41444 directly? (Contributed by NM, 24-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | dvh2dim 41446* | There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) | ||
| Theorem | dvh3dim 41447* | There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | dvh4dimN 41448* | There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) | ||
| Theorem | dvh3dim2 41449* | There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | ||
| Theorem | dvh3dim3N 41450* | There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 41449 everywhere. If this one is needed, make dvh3dim2 41449 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))) | ||
| Theorem | dochsnnz 41451 | The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ { 0 }) | ||
| Theorem | dochsatshp 41452 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014.) (Revised by Mario Carneiro, 1-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝑌) | ||
| Theorem | dochsatshpb 41453 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 29-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ( ⊥ ‘𝑄) ∈ 𝑌)) | ||
| Theorem | dochsnshp 41454 | The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ 𝑌) | ||
| Theorem | dochshpsat 41455 | A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) | ||
| Theorem | dochkrsat 41456 | The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ≠ { 0 } ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴)) | ||
| Theorem | dochkrsat2 41457 | The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴)) | ||
| Theorem | dochsat0 41458 | The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴 ∨ ( ⊥ ‘(𝐿‘𝐺)) = { 0 })) | ||
| Theorem | dochkrsm 41459 | The subspace sum of a closed subspace and a kernel orthocomplement is closed. (djhlsmcl 41415 can be used to convert sum to join.) (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘(𝐿‘𝐺))) ∈ ran 𝐼) | ||
| Theorem | dochexmidat 41460 | Special case of excluded middle for the singleton of a vector. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (( ⊥ ‘{𝑋}) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
| Theorem | dochexmidlem1 41461 | Lemma for dochexmid 41469. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 𝑞 ≠ 𝑟) | ||
| Theorem | dochexmidlem2 41462 | Lemma for dochexmid 41469. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) & ⊢ (𝜑 → 𝑝 ⊆ (𝑟 ⊕ 𝑞)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
| Theorem | dochexmidlem3 41463 | Lemma for dochexmid 41469. Use atom exchange lsatexch1 39046 to swap 𝑝 and 𝑞. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ (𝜑 → 𝑟 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) & ⊢ (𝜑 → 𝑟 ⊆ 𝑋) & ⊢ (𝜑 → 𝑞 ⊆ (𝑟 ⊕ 𝑝)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
| Theorem | dochexmidlem4 41464 | Lemma for dochexmid 41469. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ (𝜑 → 𝑞 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) ⇒ ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | ||
| Theorem | dochexmidlem5 41465 | Lemma for dochexmid 41469. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → (( ⊥ ‘𝑋) ∩ 𝑀) = { 0 }) | ||
| Theorem | dochexmidlem6 41466 | Lemma for dochexmid 41469. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → 𝑀 = 𝑋) | ||
| Theorem | dochexmidlem7 41467 | Lemma for dochexmid 41469. Contradict dochexmidlem6 41466. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑝 ∈ 𝐴) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑀 = (𝑋 ⊕ 𝑝) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) & ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) ⇒ ⊢ (𝜑 → 𝑀 ≠ 𝑋) | ||
| Theorem | dochexmidlem8 41468 | Lemma for dochexmid 41469. The contradiction of dochexmidlem6 41466 and dochexmidlem7 41467 shows that there can be no atom 𝑝 that is not in 𝑋 + ( ⊥ ‘𝑋), which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ { 0 }) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) | ||
| Theorem | dochexmid 41469 | Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 41378. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. (pexmidALTN 39979 analog.) (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) ⇒ ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) | ||
| Theorem | dochsnkrlem1 41470 | Lemma for dochsnkr 41473. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) | ||
| Theorem | dochsnkrlem2 41471 | Lemma for dochsnkr 41473. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ 𝐴 = (LSAtoms‘𝑈) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴) | ||
| Theorem | dochsnkrlem3 41472 | Lemma for dochsnkr 41473. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | ||
| Theorem | dochsnkr 41473 | A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) | ||
| Theorem | dochsnkr2 41474* | Kernel of the explicit functional 𝐺 determined by a nonzero vector 𝑋. Compare the more general lshpkr 39117. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) | ||
| Theorem | dochsnkr2cl 41475* | The 𝑋 determining functional 𝐺 belongs to the atom formed by the orthocomplement of the kernel. (Contributed by NM, 4-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | ||
| Theorem | dochflcl 41476* | Closure of the explicit functional 𝐺 determined by a nonzero vector 𝑋. Compare the more general lshpkrcl 39116. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
| Theorem | dochfl1 41477* | The value of the explicit functional 𝐺 is 1 at the 𝑋 that determines it. (Contributed by NM, 27-Oct-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) | ||
| Theorem | dochfln0 41478 | The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≠ 𝑁) | ||
| Theorem | dochkr1 41479* | A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 39070. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })(𝐺‘𝑥) = 1 ) | ||
| Theorem | dochkr1OLDN 41480* | A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 39070. (Contributed by NM, 2-Jan-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ( ⊥ ‘(𝐿‘𝐺))(𝐺‘𝑥) = 1 ) | ||
| Syntax | clpoN 41481 | Extend class notation with all polarities of a left module or left vector space. |
| class LPol | ||
| Definition | df-lpolN 41482* | Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.) |
| ⊢ LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) | ||
| Theorem | lpolsetN 41483* | The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑃 = {𝑜 ∈ (𝑆 ↑m 𝒫 𝑉) ∣ ((𝑜‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 ((𝑜‘𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) | ||
| Theorem | islpolN 41484* | The predicate "is a polarity". (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | ||
| Theorem | islpoldN 41485* | Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) & ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
| Theorem | lpolfN 41486 | Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | ||
| Theorem | lpolvN 41487 | The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | ||
| Theorem | lpolconN 41488 | Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | lpolsatN 41489 | The polarity of an atomic subspace is a hyperplane. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝐻) | ||
| Theorem | lpolpolsatN 41490 | Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑄)) = 𝑄) | ||
| Theorem | dochpolN 41491 | The subspace orthocomplement for the DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑃 = (LPol‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
| Theorem | lcfl1lem 41492* | Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
| Theorem | lcfl1 41493* | Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
| Theorem | lcfl2 41494* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl3 41495* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl4N 41496* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl5 41497* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
| Theorem | lcfl5a 41498 | Property of a functional with a closed kernel. TODO: Make lcfl5 41497 etc. obsolete and rewrite without 𝐶 hypothesis? (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
| Theorem | lcfl6lem 41499* | Lemma for lcfl6 41501. A functional 𝐺 (whose kernel is closed by dochsnkr 41473) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) ⇒ ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) | ||
| Theorem | lcfl7lem 41500* | Lemma for lcfl7N 41502. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ 𝐽 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌)))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 = 𝐽) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |