Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ps | Structured version Visualization version GIF version |
Description: Define the class of all posets (partially ordered sets) with weak ordering (e.g., "less than or equal to" instead of "less than"). A poset is a relation which is transitive, reflexive, and antisymmetric. (Contributed by NM, 11-May-2008.) |
Ref | Expression |
---|---|
df-ps | ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cps 18291 | . 2 class PosetRel | |
2 | vr | . . . . . 6 setvar 𝑟 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑟 |
4 | 3 | wrel 5595 | . . . 4 wff Rel 𝑟 |
5 | 3, 3 | ccom 5594 | . . . . 5 class (𝑟 ∘ 𝑟) |
6 | 5, 3 | wss 3888 | . . . 4 wff (𝑟 ∘ 𝑟) ⊆ 𝑟 |
7 | 3 | ccnv 5589 | . . . . . 6 class ◡𝑟 |
8 | 3, 7 | cin 3887 | . . . . 5 class (𝑟 ∩ ◡𝑟) |
9 | cid 5489 | . . . . . 6 class I | |
10 | 3 | cuni 4840 | . . . . . . 7 class ∪ 𝑟 |
11 | 10 | cuni 4840 | . . . . . 6 class ∪ ∪ 𝑟 |
12 | 9, 11 | cres 5592 | . . . . 5 class ( I ↾ ∪ ∪ 𝑟) |
13 | 8, 12 | wceq 1539 | . . . 4 wff (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟) |
14 | 4, 6, 13 | w3a 1086 | . . 3 wff (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟)) |
15 | 14, 2 | cab 2716 | . 2 class {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} |
16 | 1, 15 | wceq 1539 | 1 wff PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} |
Colors of variables: wff setvar class |
This definition is referenced by: isps 18295 |
Copyright terms: Public domain | W3C validator |