MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tsr Structured version   Visualization version   GIF version

Definition df-tsr 18073
Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.)
Assertion
Ref Expression
df-tsr TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}

Detailed syntax breakdown of Definition df-tsr
StepHypRef Expression
1 ctsr 18071 . 2 class TosetRel
2 vr . . . . . . 7 setvar 𝑟
32cv 1542 . . . . . 6 class 𝑟
43cdm 5551 . . . . 5 class dom 𝑟
54, 4cxp 5549 . . . 4 class (dom 𝑟 × dom 𝑟)
63ccnv 5550 . . . . 5 class 𝑟
73, 6cun 3864 . . . 4 class (𝑟𝑟)
85, 7wss 3866 . . 3 wff (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)
9 cps 18070 . . 3 class PosetRel
108, 2, 9crab 3065 . 2 class {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
111, 10wceq 1543 1 wff TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
Colors of variables: wff setvar class
This definition is referenced by:  istsr  18089
  Copyright terms: Public domain W3C validator