![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tsr | Structured version Visualization version GIF version |
Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.) |
Ref | Expression |
---|---|
df-tsr | ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctsr 18514 | . 2 class TosetRel | |
2 | vr | . . . . . . 7 setvar 𝑟 | |
3 | 2 | cv 1540 | . . . . . 6 class 𝑟 |
4 | 3 | cdm 5675 | . . . . 5 class dom 𝑟 |
5 | 4, 4 | cxp 5673 | . . . 4 class (dom 𝑟 × dom 𝑟) |
6 | 3 | ccnv 5674 | . . . . 5 class ◡𝑟 |
7 | 3, 6 | cun 3945 | . . . 4 class (𝑟 ∪ ◡𝑟) |
8 | 5, 7 | wss 3947 | . . 3 wff (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟) |
9 | cps 18513 | . . 3 class PosetRel | |
10 | 8, 2, 9 | crab 3432 | . 2 class {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} |
11 | 1, 10 | wceq 1541 | 1 wff TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} |
Colors of variables: wff setvar class |
This definition is referenced by: istsr 18532 |
Copyright terms: Public domain | W3C validator |