MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isps Structured version   Visualization version   GIF version

Theorem isps 18553
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.)
Assertion
Ref Expression
isps (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))

Proof of Theorem isps
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 releq 5772 . . 3 (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅))
2 coeq1 5854 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑟))
3 coeq2 5855 . . . . 5 (𝑟 = 𝑅 → (𝑅𝑟) = (𝑅𝑅))
42, 3eqtrd 2768 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
5 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
64, 5sseq12d 4011 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
7 cnveq 5870 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
85, 7ineq12d 4209 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
9 unieq 4914 . . . . . 6 (𝑟 = 𝑅 𝑟 = 𝑅)
109unieqd 4916 . . . . 5 (𝑟 = 𝑅 𝑟 = 𝑅)
1110reseq2d 5979 . . . 4 (𝑟 = 𝑅 → ( I ↾ 𝑟) = ( I ↾ 𝑅))
128, 11eqeq12d 2744 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) = ( I ↾ 𝑟) ↔ (𝑅𝑅) = ( I ↾ 𝑅)))
131, 6, 123anbi123d 1433 . 2 (𝑟 = 𝑅 → ((Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟)) ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
14 df-ps 18551 . 2 PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟))}
1513, 14elab2g 3668 1 (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1534  wcel 2099  cin 3944  wss 3945   cuni 4903   I cid 5569  ccnv 5671  cres 5674  ccom 5676  Rel wrel 5677  PosetRelcps 18549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-in 3952  df-ss 3962  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-res 5684  df-ps 18551
This theorem is referenced by:  psrel  18554  psref2  18555  pstr2  18556  cnvps  18563  psss  18565  letsr  18578
  Copyright terms: Public domain W3C validator