| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isps | Structured version Visualization version GIF version | ||
| Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.) |
| Ref | Expression |
|---|---|
| isps | ⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq 5724 | . . 3 ⊢ (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅)) | |
| 2 | coeq1 5804 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑟)) | |
| 3 | coeq2 5805 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑅 ∘ 𝑟) = (𝑅 ∘ 𝑅)) | |
| 4 | 2, 3 | eqtrd 2764 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑅)) |
| 5 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 6 | 4, 5 | sseq12d 3971 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
| 7 | cnveq 5820 | . . . . 5 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
| 8 | 5, 7 | ineq12d 4174 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∩ ◡𝑟) = (𝑅 ∩ ◡𝑅)) |
| 9 | unieq 4872 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ∪ 𝑟 = ∪ 𝑅) | |
| 10 | 9 | unieqd 4874 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ ∪ 𝑟 = ∪ ∪ 𝑅) |
| 11 | 10 | reseq2d 5934 | . . . 4 ⊢ (𝑟 = 𝑅 → ( I ↾ ∪ ∪ 𝑟) = ( I ↾ ∪ ∪ 𝑅)) |
| 12 | 8, 11 | eqeq12d 2745 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟) ↔ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅))) |
| 13 | 1, 6, 12 | 3anbi123d 1438 | . 2 ⊢ (𝑟 = 𝑅 → ((Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟)) ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) |
| 14 | df-ps 18490 | . 2 ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} | |
| 15 | 13, 14 | elab2g 3638 | 1 ⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 ∪ cuni 4861 I cid 5517 ◡ccnv 5622 ↾ cres 5625 ∘ ccom 5627 Rel wrel 5628 PosetRelcps 18488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 df-ss 3922 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-res 5635 df-ps 18490 |
| This theorem is referenced by: psrel 18493 psref2 18494 pstr2 18495 cnvps 18502 psss 18504 letsr 18517 |
| Copyright terms: Public domain | W3C validator |