MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isps Structured version   Visualization version   GIF version

Theorem isps 18074
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.)
Assertion
Ref Expression
isps (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))

Proof of Theorem isps
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 releq 5648 . . 3 (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅))
2 coeq1 5726 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑟))
3 coeq2 5727 . . . . 5 (𝑟 = 𝑅 → (𝑅𝑟) = (𝑅𝑅))
42, 3eqtrd 2777 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
5 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
64, 5sseq12d 3934 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
7 cnveq 5742 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
85, 7ineq12d 4128 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
9 unieq 4830 . . . . . 6 (𝑟 = 𝑅 𝑟 = 𝑅)
109unieqd 4833 . . . . 5 (𝑟 = 𝑅 𝑟 = 𝑅)
1110reseq2d 5851 . . . 4 (𝑟 = 𝑅 → ( I ↾ 𝑟) = ( I ↾ 𝑅))
128, 11eqeq12d 2753 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) = ( I ↾ 𝑟) ↔ (𝑅𝑅) = ( I ↾ 𝑅)))
131, 6, 123anbi123d 1438 . 2 (𝑟 = 𝑅 → ((Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟)) ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
14 df-ps 18072 . 2 PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟))}
1513, 14elab2g 3589 1 (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2110  cin 3865  wss 3866   cuni 4819   I cid 5454  ccnv 5550  cres 5553  ccom 5555  Rel wrel 5556  PosetRelcps 18070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-uni 4820  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-res 5563  df-ps 18072
This theorem is referenced by:  psrel  18075  psref2  18076  pstr2  18077  cnvps  18084  psss  18086  letsr  18099
  Copyright terms: Public domain W3C validator