![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isps | Structured version Visualization version GIF version |
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.) |
Ref | Expression |
---|---|
isps | ⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq 5767 | . . 3 ⊢ (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅)) | |
2 | coeq1 5848 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑟)) | |
3 | coeq2 5849 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑅 ∘ 𝑟) = (𝑅 ∘ 𝑅)) | |
4 | 2, 3 | eqtrd 2764 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑅)) |
5 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
6 | 4, 5 | sseq12d 4008 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
7 | cnveq 5864 | . . . . 5 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
8 | 5, 7 | ineq12d 4206 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∩ ◡𝑟) = (𝑅 ∩ ◡𝑅)) |
9 | unieq 4911 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ∪ 𝑟 = ∪ 𝑅) | |
10 | 9 | unieqd 4913 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ ∪ 𝑟 = ∪ ∪ 𝑅) |
11 | 10 | reseq2d 5972 | . . . 4 ⊢ (𝑟 = 𝑅 → ( I ↾ ∪ ∪ 𝑟) = ( I ↾ ∪ ∪ 𝑅)) |
12 | 8, 11 | eqeq12d 2740 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟) ↔ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅))) |
13 | 1, 6, 12 | 3anbi123d 1432 | . 2 ⊢ (𝑟 = 𝑅 → ((Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟)) ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) |
14 | df-ps 18523 | . 2 ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} | |
15 | 13, 14 | elab2g 3663 | 1 ⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3940 ⊆ wss 3941 ∪ cuni 4900 I cid 5564 ◡ccnv 5666 ↾ cres 5669 ∘ ccom 5671 Rel wrel 5672 PosetRelcps 18521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-in 3948 df-ss 3958 df-uni 4901 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-res 5679 df-ps 18523 |
This theorem is referenced by: psrel 18526 psref2 18527 pstr2 18528 cnvps 18535 psss 18537 letsr 18550 |
Copyright terms: Public domain | W3C validator |