MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isps Structured version   Visualization version   GIF version

Theorem isps 18626
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.)
Assertion
Ref Expression
isps (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))

Proof of Theorem isps
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 releq 5789 . . 3 (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅))
2 coeq1 5871 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑟))
3 coeq2 5872 . . . . 5 (𝑟 = 𝑅 → (𝑅𝑟) = (𝑅𝑅))
42, 3eqtrd 2775 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
5 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
64, 5sseq12d 4029 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
7 cnveq 5887 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
85, 7ineq12d 4229 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
9 unieq 4923 . . . . . 6 (𝑟 = 𝑅 𝑟 = 𝑅)
109unieqd 4925 . . . . 5 (𝑟 = 𝑅 𝑟 = 𝑅)
1110reseq2d 6000 . . . 4 (𝑟 = 𝑅 → ( I ↾ 𝑟) = ( I ↾ 𝑅))
128, 11eqeq12d 2751 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) = ( I ↾ 𝑟) ↔ (𝑅𝑅) = ( I ↾ 𝑅)))
131, 6, 123anbi123d 1435 . 2 (𝑟 = 𝑅 → ((Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟)) ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
14 df-ps 18624 . 2 PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟))}
1513, 14elab2g 3683 1 (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  cin 3962  wss 3963   cuni 4912   I cid 5582  ccnv 5688  cres 5691  ccom 5693  Rel wrel 5694  PosetRelcps 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-in 3970  df-ss 3980  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-res 5701  df-ps 18624
This theorem is referenced by:  psrel  18627  psref2  18628  pstr2  18629  cnvps  18636  psss  18638  letsr  18651
  Copyright terms: Public domain W3C validator