| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-qus | Structured version Visualization version GIF version | ||
| Description: Define a quotient ring (or quotient group), which is a special case of an image structure df-imas 17554 where the image function is 𝑥 ↦ [𝑥]𝑒. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-qus | ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cqus 17551 | . 2 class /s | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 3479 | . . 3 class V | |
| 5 | vx | . . . . 5 setvar 𝑥 | |
| 6 | 2 | cv 1538 | . . . . . 6 class 𝑟 |
| 7 | cbs 17248 | . . . . . 6 class Base | |
| 8 | 6, 7 | cfv 6560 | . . . . 5 class (Base‘𝑟) |
| 9 | 5 | cv 1538 | . . . . . 6 class 𝑥 |
| 10 | 3 | cv 1538 | . . . . . 6 class 𝑒 |
| 11 | 9, 10 | cec 8744 | . . . . 5 class [𝑥]𝑒 |
| 12 | 5, 8, 11 | cmpt 5224 | . . . 4 class (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) |
| 13 | cimas 17550 | . . . 4 class “s | |
| 14 | 12, 6, 13 | co 7432 | . . 3 class ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) |
| 15 | 2, 3, 4, 4, 14 | cmpo 7434 | . 2 class (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
| 16 | 1, 15 | wceq 1539 | 1 wff /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: qusval 17588 |
| Copyright terms: Public domain | W3C validator |