Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-qus | Structured version Visualization version GIF version |
Description: Define a quotient ring (or quotient group), which is a special case of an image structure df-imas 17264 where the image function is 𝑥 ↦ [𝑥]𝑒. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
df-qus | ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cqus 17261 | . 2 class /s | |
2 | vr | . . 3 setvar 𝑟 | |
3 | ve | . . 3 setvar 𝑒 | |
4 | cvv 3437 | . . 3 class V | |
5 | vx | . . . . 5 setvar 𝑥 | |
6 | 2 | cv 1538 | . . . . . 6 class 𝑟 |
7 | cbs 16957 | . . . . . 6 class Base | |
8 | 6, 7 | cfv 6458 | . . . . 5 class (Base‘𝑟) |
9 | 5 | cv 1538 | . . . . . 6 class 𝑥 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑒 |
11 | 9, 10 | cec 8527 | . . . . 5 class [𝑥]𝑒 |
12 | 5, 8, 11 | cmpt 5164 | . . . 4 class (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) |
13 | cimas 17260 | . . . 4 class “s | |
14 | 12, 6, 13 | co 7307 | . . 3 class ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) |
15 | 2, 3, 4, 4, 14 | cmpo 7309 | . 2 class (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
16 | 1, 15 | wceq 1539 | 1 wff /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
Colors of variables: wff setvar class |
This definition is referenced by: qusval 17298 |
Copyright terms: Public domain | W3C validator |