Detailed syntax breakdown of Definition df-imas
| Step | Hyp | Ref
| Expression |
| 1 | | cimas 17549 |
. 2
class
“s |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vv |
. . . 4
setvar 𝑣 |
| 6 | 3 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | | cbs 17247 |
. . . . 5
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . 4
class
(Base‘𝑟) |
| 9 | | cnx 17230 |
. . . . . . . . 9
class
ndx |
| 10 | 9, 7 | cfv 6561 |
. . . . . . . 8
class
(Base‘ndx) |
| 11 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 12 | 11 | crn 5686 |
. . . . . . . 8
class ran 𝑓 |
| 13 | 10, 12 | cop 4632 |
. . . . . . 7
class
〈(Base‘ndx), ran 𝑓〉 |
| 14 | | cplusg 17297 |
. . . . . . . . 9
class
+g |
| 15 | 9, 14 | cfv 6561 |
. . . . . . . 8
class
(+g‘ndx) |
| 16 | | vp |
. . . . . . . . 9
setvar 𝑝 |
| 17 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑣 |
| 18 | | vq |
. . . . . . . . . 10
setvar 𝑞 |
| 19 | 16 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑝 |
| 20 | 19, 11 | cfv 6561 |
. . . . . . . . . . . . 13
class (𝑓‘𝑝) |
| 21 | 18 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑞 |
| 22 | 21, 11 | cfv 6561 |
. . . . . . . . . . . . 13
class (𝑓‘𝑞) |
| 23 | 20, 22 | cop 4632 |
. . . . . . . . . . . 12
class
〈(𝑓‘𝑝), (𝑓‘𝑞)〉 |
| 24 | 6, 14 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(+g‘𝑟) |
| 25 | 19, 21, 24 | co 7431 |
. . . . . . . . . . . . 13
class (𝑝(+g‘𝑟)𝑞) |
| 26 | 25, 11 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑓‘(𝑝(+g‘𝑟)𝑞)) |
| 27 | 23, 26 | cop 4632 |
. . . . . . . . . . 11
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 |
| 28 | 27 | csn 4626 |
. . . . . . . . . 10
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
| 29 | 18, 17, 28 | ciun 4991 |
. . . . . . . . 9
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
| 30 | 16, 17, 29 | ciun 4991 |
. . . . . . . 8
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
| 31 | 15, 30 | cop 4632 |
. . . . . . 7
class
〈(+g‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 |
| 32 | | cmulr 17298 |
. . . . . . . . 9
class
.r |
| 33 | 9, 32 | cfv 6561 |
. . . . . . . 8
class
(.r‘ndx) |
| 34 | 6, 32 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(.r‘𝑟) |
| 35 | 19, 21, 34 | co 7431 |
. . . . . . . . . . . . 13
class (𝑝(.r‘𝑟)𝑞) |
| 36 | 35, 11 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑓‘(𝑝(.r‘𝑟)𝑞)) |
| 37 | 23, 36 | cop 4632 |
. . . . . . . . . . 11
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 |
| 38 | 37 | csn 4626 |
. . . . . . . . . 10
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
| 39 | 18, 17, 38 | ciun 4991 |
. . . . . . . . 9
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
| 40 | 16, 17, 39 | ciun 4991 |
. . . . . . . 8
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
| 41 | 33, 40 | cop 4632 |
. . . . . . 7
class
〈(.r‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 |
| 42 | 13, 31, 41 | ctp 4630 |
. . . . . 6
class
{〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} |
| 43 | | csca 17300 |
. . . . . . . . 9
class
Scalar |
| 44 | 9, 43 | cfv 6561 |
. . . . . . . 8
class
(Scalar‘ndx) |
| 45 | 6, 43 | cfv 6561 |
. . . . . . . 8
class
(Scalar‘𝑟) |
| 46 | 44, 45 | cop 4632 |
. . . . . . 7
class
〈(Scalar‘ndx), (Scalar‘𝑟)〉 |
| 47 | | cvsca 17301 |
. . . . . . . . 9
class
·𝑠 |
| 48 | 9, 47 | cfv 6561 |
. . . . . . . 8
class (
·𝑠 ‘ndx) |
| 49 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 50 | 45, 7 | cfv 6561 |
. . . . . . . . . 10
class
(Base‘(Scalar‘𝑟)) |
| 51 | 22 | csn 4626 |
. . . . . . . . . 10
class {(𝑓‘𝑞)} |
| 52 | 6, 47 | cfv 6561 |
. . . . . . . . . . . 12
class (
·𝑠 ‘𝑟) |
| 53 | 19, 21, 52 | co 7431 |
. . . . . . . . . . 11
class (𝑝(
·𝑠 ‘𝑟)𝑞) |
| 54 | 53, 11 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)) |
| 55 | 16, 49, 50, 51, 54 | cmpo 7433 |
. . . . . . . . 9
class (𝑝 ∈
(Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) |
| 56 | 18, 17, 55 | ciun 4991 |
. . . . . . . 8
class ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) |
| 57 | 48, 56 | cop 4632 |
. . . . . . 7
class 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉 |
| 58 | | cip 17302 |
. . . . . . . . 9
class
·𝑖 |
| 59 | 9, 58 | cfv 6561 |
. . . . . . . 8
class
(·𝑖‘ndx) |
| 60 | 6, 58 | cfv 6561 |
. . . . . . . . . . . . 13
class
(·𝑖‘𝑟) |
| 61 | 19, 21, 60 | co 7431 |
. . . . . . . . . . . 12
class (𝑝(·𝑖‘𝑟)𝑞) |
| 62 | 23, 61 | cop 4632 |
. . . . . . . . . . 11
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉 |
| 63 | 62 | csn 4626 |
. . . . . . . . . 10
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} |
| 64 | 18, 17, 63 | ciun 4991 |
. . . . . . . . 9
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} |
| 65 | 16, 17, 64 | ciun 4991 |
. . . . . . . 8
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} |
| 66 | 59, 65 | cop 4632 |
. . . . . . 7
class
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉 |
| 67 | 46, 57, 66 | ctp 4630 |
. . . . . 6
class
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉} |
| 68 | 42, 67 | cun 3949 |
. . . . 5
class
({〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) |
| 69 | | cts 17303 |
. . . . . . . 8
class
TopSet |
| 70 | 9, 69 | cfv 6561 |
. . . . . . 7
class
(TopSet‘ndx) |
| 71 | | ctopn 17466 |
. . . . . . . . 9
class
TopOpen |
| 72 | 6, 71 | cfv 6561 |
. . . . . . . 8
class
(TopOpen‘𝑟) |
| 73 | | cqtop 17548 |
. . . . . . . 8
class
qTop |
| 74 | 72, 11, 73 | co 7431 |
. . . . . . 7
class
((TopOpen‘𝑟)
qTop 𝑓) |
| 75 | 70, 74 | cop 4632 |
. . . . . 6
class
〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉 |
| 76 | | cple 17304 |
. . . . . . . 8
class
le |
| 77 | 9, 76 | cfv 6561 |
. . . . . . 7
class
(le‘ndx) |
| 78 | 6, 76 | cfv 6561 |
. . . . . . . . 9
class
(le‘𝑟) |
| 79 | 11, 78 | ccom 5689 |
. . . . . . . 8
class (𝑓 ∘ (le‘𝑟)) |
| 80 | 11 | ccnv 5684 |
. . . . . . . 8
class ◡𝑓 |
| 81 | 79, 80 | ccom 5689 |
. . . . . . 7
class ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓) |
| 82 | 77, 81 | cop 4632 |
. . . . . 6
class
〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉 |
| 83 | | cds 17306 |
. . . . . . . 8
class
dist |
| 84 | 9, 83 | cfv 6561 |
. . . . . . 7
class
(dist‘ndx) |
| 85 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 86 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 87 | | cn 12266 |
. . . . . . . . . 10
class
ℕ |
| 88 | | vg |
. . . . . . . . . . . 12
setvar 𝑔 |
| 89 | | c1 11156 |
. . . . . . . . . . . . . . . . . 18
class
1 |
| 90 | | vh |
. . . . . . . . . . . . . . . . . . 19
setvar ℎ |
| 91 | 90 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class ℎ |
| 92 | 89, 91 | cfv 6561 |
. . . . . . . . . . . . . . . . 17
class (ℎ‘1) |
| 93 | | c1st 8012 |
. . . . . . . . . . . . . . . . 17
class
1st |
| 94 | 92, 93 | cfv 6561 |
. . . . . . . . . . . . . . . 16
class
(1st ‘(ℎ‘1)) |
| 95 | 94, 11 | cfv 6561 |
. . . . . . . . . . . . . . 15
class (𝑓‘(1st
‘(ℎ‘1))) |
| 96 | 49 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑥 |
| 97 | 95, 96 | wceq 1540 |
. . . . . . . . . . . . . 14
wff (𝑓‘(1st
‘(ℎ‘1))) = 𝑥 |
| 98 | 86 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑛 |
| 99 | 98, 91 | cfv 6561 |
. . . . . . . . . . . . . . . . 17
class (ℎ‘𝑛) |
| 100 | | c2nd 8013 |
. . . . . . . . . . . . . . . . 17
class
2nd |
| 101 | 99, 100 | cfv 6561 |
. . . . . . . . . . . . . . . 16
class
(2nd ‘(ℎ‘𝑛)) |
| 102 | 101, 11 | cfv 6561 |
. . . . . . . . . . . . . . 15
class (𝑓‘(2nd
‘(ℎ‘𝑛))) |
| 103 | 85 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑦 |
| 104 | 102, 103 | wceq 1540 |
. . . . . . . . . . . . . 14
wff (𝑓‘(2nd
‘(ℎ‘𝑛))) = 𝑦 |
| 105 | | vi |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑖 |
| 106 | 105 | cv 1539 |
. . . . . . . . . . . . . . . . . . 19
class 𝑖 |
| 107 | 106, 91 | cfv 6561 |
. . . . . . . . . . . . . . . . . 18
class (ℎ‘𝑖) |
| 108 | 107, 100 | cfv 6561 |
. . . . . . . . . . . . . . . . 17
class
(2nd ‘(ℎ‘𝑖)) |
| 109 | 108, 11 | cfv 6561 |
. . . . . . . . . . . . . . . 16
class (𝑓‘(2nd
‘(ℎ‘𝑖))) |
| 110 | | caddc 11158 |
. . . . . . . . . . . . . . . . . . . 20
class
+ |
| 111 | 106, 89, 110 | co 7431 |
. . . . . . . . . . . . . . . . . . 19
class (𝑖 + 1) |
| 112 | 111, 91 | cfv 6561 |
. . . . . . . . . . . . . . . . . 18
class (ℎ‘(𝑖 + 1)) |
| 113 | 112, 93 | cfv 6561 |
. . . . . . . . . . . . . . . . 17
class
(1st ‘(ℎ‘(𝑖 + 1))) |
| 114 | 113, 11 | cfv 6561 |
. . . . . . . . . . . . . . . 16
class (𝑓‘(1st
‘(ℎ‘(𝑖 + 1)))) |
| 115 | 109, 114 | wceq 1540 |
. . . . . . . . . . . . . . 15
wff (𝑓‘(2nd
‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))) |
| 116 | | cmin 11492 |
. . . . . . . . . . . . . . . . 17
class
− |
| 117 | 98, 89, 116 | co 7431 |
. . . . . . . . . . . . . . . 16
class (𝑛 − 1) |
| 118 | | cfz 13547 |
. . . . . . . . . . . . . . . 16
class
... |
| 119 | 89, 117, 118 | co 7431 |
. . . . . . . . . . . . . . 15
class
(1...(𝑛 −
1)) |
| 120 | 115, 105,
119 | wral 3061 |
. . . . . . . . . . . . . 14
wff
∀𝑖 ∈
(1...(𝑛 − 1))(𝑓‘(2nd
‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))) |
| 121 | 97, 104, 120 | w3a 1087 |
. . . . . . . . . . . . 13
wff ((𝑓‘(1st
‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1))))) |
| 122 | 17, 17 | cxp 5683 |
. . . . . . . . . . . . . 14
class (𝑣 × 𝑣) |
| 123 | 89, 98, 118 | co 7431 |
. . . . . . . . . . . . . 14
class
(1...𝑛) |
| 124 | | cmap 8866 |
. . . . . . . . . . . . . 14
class
↑m |
| 125 | 122, 123,
124 | co 7431 |
. . . . . . . . . . . . 13
class ((𝑣 × 𝑣) ↑m (1...𝑛)) |
| 126 | 121, 90, 125 | crab 3436 |
. . . . . . . . . . . 12
class {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
| 127 | | cxrs 17545 |
. . . . . . . . . . . . 13
class
ℝ*𝑠 |
| 128 | 6, 83 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(dist‘𝑟) |
| 129 | 88 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑔 |
| 130 | 128, 129 | ccom 5689 |
. . . . . . . . . . . . 13
class
((dist‘𝑟)
∘ 𝑔) |
| 131 | | cgsu 17485 |
. . . . . . . . . . . . 13
class
Σg |
| 132 | 127, 130,
131 | co 7431 |
. . . . . . . . . . . 12
class
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔)) |
| 133 | 88, 126, 132 | cmpt 5225 |
. . . . . . . . . . 11
class (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) |
| 134 | 133 | crn 5686 |
. . . . . . . . . 10
class ran
(𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) |
| 135 | 86, 87, 134 | ciun 4991 |
. . . . . . . . 9
class ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) |
| 136 | | cxr 11294 |
. . . . . . . . 9
class
ℝ* |
| 137 | | clt 11295 |
. . . . . . . . 9
class
< |
| 138 | 135, 136,
137 | cinf 9481 |
. . . . . . . 8
class
inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ) |
| 139 | 49, 85, 12, 12, 138 | cmpo 7433 |
. . . . . . 7
class (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< )) |
| 140 | 84, 139 | cop 4632 |
. . . . . 6
class
〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ))〉 |
| 141 | 75, 82, 140 | ctp 4630 |
. . . . 5
class
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ))〉} |
| 142 | 68, 141 | cun 3949 |
. . . 4
class
(({〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉}) |
| 143 | 5, 8, 142 | csb 3899 |
. . 3
class
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉}) |
| 144 | 2, 3, 4, 4, 143 | cmpo 7433 |
. 2
class (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉})) |
| 145 | 1, 144 | wceq 1540 |
1
wff
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉})) |