Detailed syntax breakdown of Definition df-imas
Step | Hyp | Ref
| Expression |
1 | | cimas 17009 |
. 2
class
“s |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3408 |
. . 3
class
V |
5 | | vv |
. . . 4
setvar 𝑣 |
6 | 3 | cv 1542 |
. . . . 5
class 𝑟 |
7 | | cbs 16760 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6380 |
. . . 4
class
(Base‘𝑟) |
9 | | cnx 16744 |
. . . . . . . . 9
class
ndx |
10 | 9, 7 | cfv 6380 |
. . . . . . . 8
class
(Base‘ndx) |
11 | 2 | cv 1542 |
. . . . . . . . 9
class 𝑓 |
12 | 11 | crn 5552 |
. . . . . . . 8
class ran 𝑓 |
13 | 10, 12 | cop 4547 |
. . . . . . 7
class
〈(Base‘ndx), ran 𝑓〉 |
14 | | cplusg 16802 |
. . . . . . . . 9
class
+g |
15 | 9, 14 | cfv 6380 |
. . . . . . . 8
class
(+g‘ndx) |
16 | | vp |
. . . . . . . . 9
setvar 𝑝 |
17 | 5 | cv 1542 |
. . . . . . . . 9
class 𝑣 |
18 | | vq |
. . . . . . . . . 10
setvar 𝑞 |
19 | 16 | cv 1542 |
. . . . . . . . . . . . . 14
class 𝑝 |
20 | 19, 11 | cfv 6380 |
. . . . . . . . . . . . 13
class (𝑓‘𝑝) |
21 | 18 | cv 1542 |
. . . . . . . . . . . . . 14
class 𝑞 |
22 | 21, 11 | cfv 6380 |
. . . . . . . . . . . . 13
class (𝑓‘𝑞) |
23 | 20, 22 | cop 4547 |
. . . . . . . . . . . 12
class
〈(𝑓‘𝑝), (𝑓‘𝑞)〉 |
24 | 6, 14 | cfv 6380 |
. . . . . . . . . . . . . 14
class
(+g‘𝑟) |
25 | 19, 21, 24 | co 7213 |
. . . . . . . . . . . . 13
class (𝑝(+g‘𝑟)𝑞) |
26 | 25, 11 | cfv 6380 |
. . . . . . . . . . . 12
class (𝑓‘(𝑝(+g‘𝑟)𝑞)) |
27 | 23, 26 | cop 4547 |
. . . . . . . . . . 11
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 |
28 | 27 | csn 4541 |
. . . . . . . . . 10
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
29 | 18, 17, 28 | ciun 4904 |
. . . . . . . . 9
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
30 | 16, 17, 29 | ciun 4904 |
. . . . . . . 8
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
31 | 15, 30 | cop 4547 |
. . . . . . 7
class
〈(+g‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 |
32 | | cmulr 16803 |
. . . . . . . . 9
class
.r |
33 | 9, 32 | cfv 6380 |
. . . . . . . 8
class
(.r‘ndx) |
34 | 6, 32 | cfv 6380 |
. . . . . . . . . . . . . 14
class
(.r‘𝑟) |
35 | 19, 21, 34 | co 7213 |
. . . . . . . . . . . . 13
class (𝑝(.r‘𝑟)𝑞) |
36 | 35, 11 | cfv 6380 |
. . . . . . . . . . . 12
class (𝑓‘(𝑝(.r‘𝑟)𝑞)) |
37 | 23, 36 | cop 4547 |
. . . . . . . . . . 11
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 |
38 | 37 | csn 4541 |
. . . . . . . . . 10
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
39 | 18, 17, 38 | ciun 4904 |
. . . . . . . . 9
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
40 | 16, 17, 39 | ciun 4904 |
. . . . . . . 8
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
41 | 33, 40 | cop 4547 |
. . . . . . 7
class
〈(.r‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 |
42 | 13, 31, 41 | ctp 4545 |
. . . . . 6
class
{〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} |
43 | | csca 16805 |
. . . . . . . . 9
class
Scalar |
44 | 9, 43 | cfv 6380 |
. . . . . . . 8
class
(Scalar‘ndx) |
45 | 6, 43 | cfv 6380 |
. . . . . . . 8
class
(Scalar‘𝑟) |
46 | 44, 45 | cop 4547 |
. . . . . . 7
class
〈(Scalar‘ndx), (Scalar‘𝑟)〉 |
47 | | cvsca 16806 |
. . . . . . . . 9
class
·𝑠 |
48 | 9, 47 | cfv 6380 |
. . . . . . . 8
class (
·𝑠 ‘ndx) |
49 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
50 | 45, 7 | cfv 6380 |
. . . . . . . . . 10
class
(Base‘(Scalar‘𝑟)) |
51 | 22 | csn 4541 |
. . . . . . . . . 10
class {(𝑓‘𝑞)} |
52 | 6, 47 | cfv 6380 |
. . . . . . . . . . . 12
class (
·𝑠 ‘𝑟) |
53 | 19, 21, 52 | co 7213 |
. . . . . . . . . . 11
class (𝑝(
·𝑠 ‘𝑟)𝑞) |
54 | 53, 11 | cfv 6380 |
. . . . . . . . . 10
class (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)) |
55 | 16, 49, 50, 51, 54 | cmpo 7215 |
. . . . . . . . 9
class (𝑝 ∈
(Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) |
56 | 18, 17, 55 | ciun 4904 |
. . . . . . . 8
class ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) |
57 | 48, 56 | cop 4547 |
. . . . . . 7
class 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉 |
58 | | cip 16807 |
. . . . . . . . 9
class
·𝑖 |
59 | 9, 58 | cfv 6380 |
. . . . . . . 8
class
(·𝑖‘ndx) |
60 | 6, 58 | cfv 6380 |
. . . . . . . . . . . . 13
class
(·𝑖‘𝑟) |
61 | 19, 21, 60 | co 7213 |
. . . . . . . . . . . 12
class (𝑝(·𝑖‘𝑟)𝑞) |
62 | 23, 61 | cop 4547 |
. . . . . . . . . . 11
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉 |
63 | 62 | csn 4541 |
. . . . . . . . . 10
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} |
64 | 18, 17, 63 | ciun 4904 |
. . . . . . . . 9
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} |
65 | 16, 17, 64 | ciun 4904 |
. . . . . . . 8
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} |
66 | 59, 65 | cop 4547 |
. . . . . . 7
class
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉 |
67 | 46, 57, 66 | ctp 4545 |
. . . . . 6
class
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉} |
68 | 42, 67 | cun 3864 |
. . . . 5
class
({〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) |
69 | | cts 16808 |
. . . . . . . 8
class
TopSet |
70 | 9, 69 | cfv 6380 |
. . . . . . 7
class
(TopSet‘ndx) |
71 | | ctopn 16926 |
. . . . . . . . 9
class
TopOpen |
72 | 6, 71 | cfv 6380 |
. . . . . . . 8
class
(TopOpen‘𝑟) |
73 | | cqtop 17008 |
. . . . . . . 8
class
qTop |
74 | 72, 11, 73 | co 7213 |
. . . . . . 7
class
((TopOpen‘𝑟)
qTop 𝑓) |
75 | 70, 74 | cop 4547 |
. . . . . 6
class
〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉 |
76 | | cple 16809 |
. . . . . . . 8
class
le |
77 | 9, 76 | cfv 6380 |
. . . . . . 7
class
(le‘ndx) |
78 | 6, 76 | cfv 6380 |
. . . . . . . . 9
class
(le‘𝑟) |
79 | 11, 78 | ccom 5555 |
. . . . . . . 8
class (𝑓 ∘ (le‘𝑟)) |
80 | 11 | ccnv 5550 |
. . . . . . . 8
class ◡𝑓 |
81 | 79, 80 | ccom 5555 |
. . . . . . 7
class ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓) |
82 | 77, 81 | cop 4547 |
. . . . . 6
class
〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉 |
83 | | cds 16811 |
. . . . . . . 8
class
dist |
84 | 9, 83 | cfv 6380 |
. . . . . . 7
class
(dist‘ndx) |
85 | | vy |
. . . . . . . 8
setvar 𝑦 |
86 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
87 | | cn 11830 |
. . . . . . . . . 10
class
ℕ |
88 | | vg |
. . . . . . . . . . . 12
setvar 𝑔 |
89 | | c1 10730 |
. . . . . . . . . . . . . . . . . 18
class
1 |
90 | | vh |
. . . . . . . . . . . . . . . . . . 19
setvar ℎ |
91 | 90 | cv 1542 |
. . . . . . . . . . . . . . . . . 18
class ℎ |
92 | 89, 91 | cfv 6380 |
. . . . . . . . . . . . . . . . 17
class (ℎ‘1) |
93 | | c1st 7759 |
. . . . . . . . . . . . . . . . 17
class
1st |
94 | 92, 93 | cfv 6380 |
. . . . . . . . . . . . . . . 16
class
(1st ‘(ℎ‘1)) |
95 | 94, 11 | cfv 6380 |
. . . . . . . . . . . . . . 15
class (𝑓‘(1st
‘(ℎ‘1))) |
96 | 49 | cv 1542 |
. . . . . . . . . . . . . . 15
class 𝑥 |
97 | 95, 96 | wceq 1543 |
. . . . . . . . . . . . . 14
wff (𝑓‘(1st
‘(ℎ‘1))) = 𝑥 |
98 | 86 | cv 1542 |
. . . . . . . . . . . . . . . . . 18
class 𝑛 |
99 | 98, 91 | cfv 6380 |
. . . . . . . . . . . . . . . . 17
class (ℎ‘𝑛) |
100 | | c2nd 7760 |
. . . . . . . . . . . . . . . . 17
class
2nd |
101 | 99, 100 | cfv 6380 |
. . . . . . . . . . . . . . . 16
class
(2nd ‘(ℎ‘𝑛)) |
102 | 101, 11 | cfv 6380 |
. . . . . . . . . . . . . . 15
class (𝑓‘(2nd
‘(ℎ‘𝑛))) |
103 | 85 | cv 1542 |
. . . . . . . . . . . . . . 15
class 𝑦 |
104 | 102, 103 | wceq 1543 |
. . . . . . . . . . . . . 14
wff (𝑓‘(2nd
‘(ℎ‘𝑛))) = 𝑦 |
105 | | vi |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑖 |
106 | 105 | cv 1542 |
. . . . . . . . . . . . . . . . . . 19
class 𝑖 |
107 | 106, 91 | cfv 6380 |
. . . . . . . . . . . . . . . . . 18
class (ℎ‘𝑖) |
108 | 107, 100 | cfv 6380 |
. . . . . . . . . . . . . . . . 17
class
(2nd ‘(ℎ‘𝑖)) |
109 | 108, 11 | cfv 6380 |
. . . . . . . . . . . . . . . 16
class (𝑓‘(2nd
‘(ℎ‘𝑖))) |
110 | | caddc 10732 |
. . . . . . . . . . . . . . . . . . . 20
class
+ |
111 | 106, 89, 110 | co 7213 |
. . . . . . . . . . . . . . . . . . 19
class (𝑖 + 1) |
112 | 111, 91 | cfv 6380 |
. . . . . . . . . . . . . . . . . 18
class (ℎ‘(𝑖 + 1)) |
113 | 112, 93 | cfv 6380 |
. . . . . . . . . . . . . . . . 17
class
(1st ‘(ℎ‘(𝑖 + 1))) |
114 | 113, 11 | cfv 6380 |
. . . . . . . . . . . . . . . 16
class (𝑓‘(1st
‘(ℎ‘(𝑖 + 1)))) |
115 | 109, 114 | wceq 1543 |
. . . . . . . . . . . . . . 15
wff (𝑓‘(2nd
‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))) |
116 | | cmin 11062 |
. . . . . . . . . . . . . . . . 17
class
− |
117 | 98, 89, 116 | co 7213 |
. . . . . . . . . . . . . . . 16
class (𝑛 − 1) |
118 | | cfz 13095 |
. . . . . . . . . . . . . . . 16
class
... |
119 | 89, 117, 118 | co 7213 |
. . . . . . . . . . . . . . 15
class
(1...(𝑛 −
1)) |
120 | 115, 105,
119 | wral 3061 |
. . . . . . . . . . . . . 14
wff
∀𝑖 ∈
(1...(𝑛 − 1))(𝑓‘(2nd
‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))) |
121 | 97, 104, 120 | w3a 1089 |
. . . . . . . . . . . . 13
wff ((𝑓‘(1st
‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1))))) |
122 | 17, 17 | cxp 5549 |
. . . . . . . . . . . . . 14
class (𝑣 × 𝑣) |
123 | 89, 98, 118 | co 7213 |
. . . . . . . . . . . . . 14
class
(1...𝑛) |
124 | | cmap 8508 |
. . . . . . . . . . . . . 14
class
↑m |
125 | 122, 123,
124 | co 7213 |
. . . . . . . . . . . . 13
class ((𝑣 × 𝑣) ↑m (1...𝑛)) |
126 | 121, 90, 125 | crab 3065 |
. . . . . . . . . . . 12
class {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
127 | | cxrs 17005 |
. . . . . . . . . . . . 13
class
ℝ*𝑠 |
128 | 6, 83 | cfv 6380 |
. . . . . . . . . . . . . 14
class
(dist‘𝑟) |
129 | 88 | cv 1542 |
. . . . . . . . . . . . . 14
class 𝑔 |
130 | 128, 129 | ccom 5555 |
. . . . . . . . . . . . 13
class
((dist‘𝑟)
∘ 𝑔) |
131 | | cgsu 16945 |
. . . . . . . . . . . . 13
class
Σg |
132 | 127, 130,
131 | co 7213 |
. . . . . . . . . . . 12
class
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔)) |
133 | 88, 126, 132 | cmpt 5135 |
. . . . . . . . . . 11
class (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) |
134 | 133 | crn 5552 |
. . . . . . . . . 10
class ran
(𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) |
135 | 86, 87, 134 | ciun 4904 |
. . . . . . . . 9
class ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) |
136 | | cxr 10866 |
. . . . . . . . 9
class
ℝ* |
137 | | clt 10867 |
. . . . . . . . 9
class
< |
138 | 135, 136,
137 | cinf 9057 |
. . . . . . . 8
class
inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ) |
139 | 49, 85, 12, 12, 138 | cmpo 7215 |
. . . . . . 7
class (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< )) |
140 | 84, 139 | cop 4547 |
. . . . . 6
class
〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ))〉 |
141 | 75, 82, 140 | ctp 4545 |
. . . . 5
class
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ))〉} |
142 | 68, 141 | cun 3864 |
. . . 4
class
(({〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉}) |
143 | 5, 8, 142 | csb 3811 |
. . 3
class
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉}) |
144 | 2, 3, 4, 4, 143 | cmpo 7215 |
. 2
class (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉})) |
145 | 1, 144 | wceq 1543 |
1
wff
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉})) |