Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qusval | Structured version Visualization version GIF version |
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
qusval | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | df-qus 17137 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))) |
4 | simprl 767 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑟 = 𝑅) | |
5 | 4 | fveq2d 6760 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = (Base‘𝑅)) |
6 | qusval.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑉 = (Base‘𝑅)) |
8 | 5, 7 | eqtr4d 2781 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = 𝑉) |
9 | eceq2 8496 | . . . . . . 7 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
10 | 9 | ad2antll 725 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → [𝑥]𝑒 = [𝑥] ∼ ) |
11 | 8, 10 | mpteq12dv 5161 | . . . . 5 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )) |
12 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
13 | 11, 12 | eqtr4di 2797 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹) |
14 | 13, 4 | oveq12d 7273 | . . 3 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹 “s 𝑅)) |
15 | qusval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
16 | 15 | elexd 3442 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
17 | qusval.e | . . . 4 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
18 | 17 | elexd 3442 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
19 | ovexd 7290 | . . 3 ⊢ (𝜑 → (𝐹 “s 𝑅) ∈ V) | |
20 | 3, 14, 16, 18, 19 | ovmpod 7403 | . 2 ⊢ (𝜑 → (𝑅 /s ∼ ) = (𝐹 “s 𝑅)) |
21 | 1, 20 | eqtrd 2778 | 1 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 [cec 8454 Basecbs 16840 “s cimas 17132 /s cqus 17133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ec 8458 df-qus 17137 |
This theorem is referenced by: qusin 17172 qusbas 17173 quss 17174 qusaddval 17181 qusaddf 17182 qusmulval 17183 qusmulf 17184 qusgrp2 18608 qusring2 19774 qustps 22781 qustgpopn 23179 qustgplem 23180 qustgphaus 23182 qusscaval 31454 quslmod 31456 quslmhm 31457 |
Copyright terms: Public domain | W3C validator |