MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusval Structured version   Visualization version   GIF version

Theorem qusval 17561
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
qusval (𝜑𝑈 = (𝐹s 𝑅))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem qusval
Dummy variables 𝑒 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusval.u . 2 (𝜑𝑈 = (𝑅 /s ))
2 df-qus 17528 . . . 4 /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
32a1i 11 . . 3 (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)))
4 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑟 = 𝑅)
54fveq2d 6885 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = (Base‘𝑅))
6 qusval.v . . . . . . . 8 (𝜑𝑉 = (Base‘𝑅))
76adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑉 = (Base‘𝑅))
85, 7eqtr4d 2774 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = 𝑉)
9 eceq2 8765 . . . . . . 7 (𝑒 = → [𝑥]𝑒 = [𝑥] )
109ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → [𝑥]𝑒 = [𝑥] )
118, 10mpteq12dv 5212 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥𝑉 ↦ [𝑥] ))
12 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
1311, 12eqtr4di 2789 . . . 4 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹)
1413, 4oveq12d 7428 . . 3 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹s 𝑅))
15 qusval.r . . . 4 (𝜑𝑅𝑍)
1615elexd 3488 . . 3 (𝜑𝑅 ∈ V)
17 qusval.e . . . 4 (𝜑𝑊)
1817elexd 3488 . . 3 (𝜑 ∈ V)
19 ovexd 7445 . . 3 (𝜑 → (𝐹s 𝑅) ∈ V)
203, 14, 16, 18, 19ovmpod 7564 . 2 (𝜑 → (𝑅 /s ) = (𝐹s 𝑅))
211, 20eqtrd 2771 1 (𝜑𝑈 = (𝐹s 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  (class class class)co 7410  cmpo 7412  [cec 8722  Basecbs 17233  s cimas 17523   /s cqus 17524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-ec 8726  df-qus 17528
This theorem is referenced by:  qusin  17563  qusbas  17564  quss  17565  qusaddval  17572  qusaddf  17573  qusmulval  17574  qusmulf  17575  qusgrp2  19046  qusrng  20145  qusring2  20299  qustps  23665  qustgpopn  24063  qustgplem  24064  qustgphaus  24066  qusvsval  33372  quslmod  33378  quslmhm  33379
  Copyright terms: Public domain W3C validator