| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusval | Structured version Visualization version GIF version | ||
| Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| qusval | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | df-qus 17410 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))) |
| 4 | simprl 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑟 = 𝑅) | |
| 5 | 4 | fveq2d 6826 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = (Base‘𝑅)) |
| 6 | qusval.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑉 = (Base‘𝑅)) |
| 8 | 5, 7 | eqtr4d 2769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = 𝑉) |
| 9 | eceq2 8663 | . . . . . . 7 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
| 10 | 9 | ad2antll 729 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → [𝑥]𝑒 = [𝑥] ∼ ) |
| 11 | 8, 10 | mpteq12dv 5178 | . . . . 5 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )) |
| 12 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 13 | 11, 12 | eqtr4di 2784 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹) |
| 14 | 13, 4 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹 “s 𝑅)) |
| 15 | qusval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 16 | 15 | elexd 3460 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
| 17 | qusval.e | . . . 4 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 18 | 17 | elexd 3460 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
| 19 | ovexd 7381 | . . 3 ⊢ (𝜑 → (𝐹 “s 𝑅) ∈ V) | |
| 20 | 3, 14, 16, 18, 19 | ovmpod 7498 | . 2 ⊢ (𝜑 → (𝑅 /s ∼ ) = (𝐹 “s 𝑅)) |
| 21 | 1, 20 | eqtrd 2766 | 1 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 [cec 8620 Basecbs 17117 “s cimas 17405 /s cqus 17406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-ec 8624 df-qus 17410 |
| This theorem is referenced by: qusin 17445 qusbas 17446 quss 17447 qusaddval 17454 qusaddf 17455 qusmulval 17456 qusmulf 17457 qusgrp2 18968 qusrng 20096 qusring2 20250 qustps 23635 qustgpopn 24033 qustgplem 24034 qustgphaus 24036 qusvsval 33312 quslmod 33318 quslmhm 33319 |
| Copyright terms: Public domain | W3C validator |