MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusval Structured version   Visualization version   GIF version

Theorem qusval 16806
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
qusval (𝜑𝑈 = (𝐹s 𝑅))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem qusval
Dummy variables 𝑒 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusval.u . 2 (𝜑𝑈 = (𝑅 /s ))
2 df-qus 16773 . . . 4 /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
32a1i 11 . . 3 (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)))
4 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑟 = 𝑅)
54fveq2d 6656 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = (Base‘𝑅))
6 qusval.v . . . . . . . 8 (𝜑𝑉 = (Base‘𝑅))
76adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑉 = (Base‘𝑅))
85, 7eqtr4d 2860 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = 𝑉)
9 eceq2 8316 . . . . . . 7 (𝑒 = → [𝑥]𝑒 = [𝑥] )
109ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → [𝑥]𝑒 = [𝑥] )
118, 10mpteq12dv 5127 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥𝑉 ↦ [𝑥] ))
12 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
1311, 12eqtr4di 2875 . . . 4 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹)
1413, 4oveq12d 7158 . . 3 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹s 𝑅))
15 qusval.r . . . 4 (𝜑𝑅𝑍)
1615elexd 3489 . . 3 (𝜑𝑅 ∈ V)
17 qusval.e . . . 4 (𝜑𝑊)
1817elexd 3489 . . 3 (𝜑 ∈ V)
19 ovexd 7175 . . 3 (𝜑 → (𝐹s 𝑅) ∈ V)
203, 14, 16, 18, 19ovmpod 7286 . 2 (𝜑 → (𝑅 /s ) = (𝐹s 𝑅))
211, 20eqtrd 2857 1 (𝜑𝑈 = (𝐹s 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  Vcvv 3469  cmpt 5122  cfv 6334  (class class class)co 7140  cmpo 7142  [cec 8274  Basecbs 16474  s cimas 16768   /s cqus 16769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-ec 8278  df-qus 16773
This theorem is referenced by:  qusin  16808  qusbas  16809  quss  16810  qusaddval  16817  qusaddf  16818  qusmulval  16819  qusmulf  16820  qusgrp2  18208  qusring2  19364  qustps  22325  qustgpopn  22723  qustgplem  22724  qustgphaus  22726  qusscaval  30953  quslmod  30955  quslmhm  30956
  Copyright terms: Public domain W3C validator