Detailed syntax breakdown of Definition df-reno
| Step | Hyp | Ref
| Expression |
| 1 | | creno 28425 |
. 2
class
ℝs |
| 2 | | vn |
. . . . . . . . 9
setvar 𝑛 |
| 3 | 2 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 4 | | cnegs 28051 |
. . . . . . . 8
class
-us |
| 5 | 3, 4 | cfv 6561 |
. . . . . . 7
class (
-us ‘𝑛) |
| 6 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 7 | 6 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 8 | | cslt 27685 |
. . . . . . 7
class
<s |
| 9 | 5, 7, 8 | wbr 5143 |
. . . . . 6
wff (
-us ‘𝑛)
<s 𝑥 |
| 10 | 7, 3, 8 | wbr 5143 |
. . . . . 6
wff 𝑥 <s 𝑛 |
| 11 | 9, 10 | wa 395 |
. . . . 5
wff ((
-us ‘𝑛)
<s 𝑥 ∧ 𝑥 <s 𝑛) |
| 12 | | cnns 28319 |
. . . . 5
class
ℕs |
| 13 | 11, 2, 12 | wrex 3070 |
. . . 4
wff
∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) |
| 14 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 15 | 14 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 16 | | c1s 27868 |
. . . . . . . . . . 11
class
1s |
| 17 | | cdivs 28213 |
. . . . . . . . . . 11
class
/su |
| 18 | 16, 3, 17 | co 7431 |
. . . . . . . . . 10
class (
1s /su 𝑛) |
| 19 | | csubs 28052 |
. . . . . . . . . 10
class
-s |
| 20 | 7, 18, 19 | co 7431 |
. . . . . . . . 9
class (𝑥 -s ( 1s
/su 𝑛)) |
| 21 | 15, 20 | wceq 1540 |
. . . . . . . 8
wff 𝑦 = (𝑥 -s ( 1s
/su 𝑛)) |
| 22 | 21, 2, 12 | wrex 3070 |
. . . . . . 7
wff
∃𝑛 ∈
ℕs 𝑦 =
(𝑥 -s (
1s /su 𝑛)) |
| 23 | 22, 14 | cab 2714 |
. . . . . 6
class {𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |
| 24 | | cadds 27992 |
. . . . . . . . . 10
class
+s |
| 25 | 7, 18, 24 | co 7431 |
. . . . . . . . 9
class (𝑥 +s ( 1s
/su 𝑛)) |
| 26 | 15, 25 | wceq 1540 |
. . . . . . . 8
wff 𝑦 = (𝑥 +s ( 1s
/su 𝑛)) |
| 27 | 26, 2, 12 | wrex 3070 |
. . . . . . 7
wff
∃𝑛 ∈
ℕs 𝑦 =
(𝑥 +s (
1s /su 𝑛)) |
| 28 | 27, 14 | cab 2714 |
. . . . . 6
class {𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))} |
| 29 | | cscut 27827 |
. . . . . 6
class
|s |
| 30 | 23, 28, 29 | co 7431 |
. . . . 5
class ({𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}) |
| 31 | 7, 30 | wceq 1540 |
. . . 4
wff 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}) |
| 32 | 13, 31 | wa 395 |
. . 3
wff
(∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))})) |
| 33 | | csur 27684 |
. . 3
class No |
| 34 | 32, 6, 33 | crab 3436 |
. 2
class {𝑥 ∈
No ∣ (∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}))} |
| 35 | 1, 34 | wceq 1540 |
1
wff
ℝs = {𝑥 ∈ No
∣ (∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}))} |