MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-reno Structured version   Visualization version   GIF version

Definition df-reno 28294
Description: Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
df-reno s = {𝑥 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑥𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))}
Distinct variable group:   𝑥,𝑦,𝑛

Detailed syntax breakdown of Definition df-reno
StepHypRef Expression
1 creno 28293 . 2 class s
2 vn . . . . . . . . 9 setvar 𝑛
32cv 1532 . . . . . . . 8 class 𝑛
4 cnegs 27978 . . . . . . . 8 class -us
53, 4cfv 6549 . . . . . . 7 class ( -us𝑛)
6 vx . . . . . . . 8 setvar 𝑥
76cv 1532 . . . . . . 7 class 𝑥
8 cslt 27619 . . . . . . 7 class <s
95, 7, 8wbr 5149 . . . . . 6 wff ( -us𝑛) <s 𝑥
107, 3, 8wbr 5149 . . . . . 6 wff 𝑥 <s 𝑛
119, 10wa 394 . . . . 5 wff (( -us𝑛) <s 𝑥𝑥 <s 𝑛)
12 cnns 28236 . . . . 5 class s
1311, 2, 12wrex 3059 . . . 4 wff 𝑛 ∈ ℕs (( -us𝑛) <s 𝑥𝑥 <s 𝑛)
14 vy . . . . . . . . . 10 setvar 𝑦
1514cv 1532 . . . . . . . . 9 class 𝑦
16 c1s 27802 . . . . . . . . . . 11 class 1s
17 cdivs 28137 . . . . . . . . . . 11 class /su
1816, 3, 17co 7419 . . . . . . . . . 10 class ( 1s /su 𝑛)
19 csubs 27979 . . . . . . . . . 10 class -s
207, 18, 19co 7419 . . . . . . . . 9 class (𝑥 -s ( 1s /su 𝑛))
2115, 20wceq 1533 . . . . . . . 8 wff 𝑦 = (𝑥 -s ( 1s /su 𝑛))
2221, 2, 12wrex 3059 . . . . . . 7 wff 𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))
2322, 14cab 2702 . . . . . 6 class {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))}
24 cadds 27922 . . . . . . . . . 10 class +s
257, 18, 24co 7419 . . . . . . . . 9 class (𝑥 +s ( 1s /su 𝑛))
2615, 25wceq 1533 . . . . . . . 8 wff 𝑦 = (𝑥 +s ( 1s /su 𝑛))
2726, 2, 12wrex 3059 . . . . . . 7 wff 𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))
2827, 14cab 2702 . . . . . 6 class {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}
29 cscut 27761 . . . . . 6 class |s
3023, 28, 29co 7419 . . . . 5 class ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))})
317, 30wceq 1533 . . . 4 wff 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))})
3213, 31wa 394 . . 3 wff (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑥𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))
33 csur 27618 . . 3 class No
3432, 6, 33crab 3418 . 2 class {𝑥 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑥𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))}
351, 34wceq 1533 1 wff s = {𝑥 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑥𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))}
Colors of variables: wff setvar class
This definition is referenced by:  elreno  28295
  Copyright terms: Public domain W3C validator