Detailed syntax breakdown of Definition df-reno
Step | Hyp | Ref
| Expression |
1 | | creno 28293 |
. 2
class
ℝs |
2 | | vn |
. . . . . . . . 9
setvar 𝑛 |
3 | 2 | cv 1532 |
. . . . . . . 8
class 𝑛 |
4 | | cnegs 27978 |
. . . . . . . 8
class
-us |
5 | 3, 4 | cfv 6549 |
. . . . . . 7
class (
-us ‘𝑛) |
6 | | vx |
. . . . . . . 8
setvar 𝑥 |
7 | 6 | cv 1532 |
. . . . . . 7
class 𝑥 |
8 | | cslt 27619 |
. . . . . . 7
class
<s |
9 | 5, 7, 8 | wbr 5149 |
. . . . . 6
wff (
-us ‘𝑛)
<s 𝑥 |
10 | 7, 3, 8 | wbr 5149 |
. . . . . 6
wff 𝑥 <s 𝑛 |
11 | 9, 10 | wa 394 |
. . . . 5
wff ((
-us ‘𝑛)
<s 𝑥 ∧ 𝑥 <s 𝑛) |
12 | | cnns 28236 |
. . . . 5
class
ℕs |
13 | 11, 2, 12 | wrex 3059 |
. . . 4
wff
∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) |
14 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
15 | 14 | cv 1532 |
. . . . . . . . 9
class 𝑦 |
16 | | c1s 27802 |
. . . . . . . . . . 11
class
1s |
17 | | cdivs 28137 |
. . . . . . . . . . 11
class
/su |
18 | 16, 3, 17 | co 7419 |
. . . . . . . . . 10
class (
1s /su 𝑛) |
19 | | csubs 27979 |
. . . . . . . . . 10
class
-s |
20 | 7, 18, 19 | co 7419 |
. . . . . . . . 9
class (𝑥 -s ( 1s
/su 𝑛)) |
21 | 15, 20 | wceq 1533 |
. . . . . . . 8
wff 𝑦 = (𝑥 -s ( 1s
/su 𝑛)) |
22 | 21, 2, 12 | wrex 3059 |
. . . . . . 7
wff
∃𝑛 ∈
ℕs 𝑦 =
(𝑥 -s (
1s /su 𝑛)) |
23 | 22, 14 | cab 2702 |
. . . . . 6
class {𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |
24 | | cadds 27922 |
. . . . . . . . . 10
class
+s |
25 | 7, 18, 24 | co 7419 |
. . . . . . . . 9
class (𝑥 +s ( 1s
/su 𝑛)) |
26 | 15, 25 | wceq 1533 |
. . . . . . . 8
wff 𝑦 = (𝑥 +s ( 1s
/su 𝑛)) |
27 | 26, 2, 12 | wrex 3059 |
. . . . . . 7
wff
∃𝑛 ∈
ℕs 𝑦 =
(𝑥 +s (
1s /su 𝑛)) |
28 | 27, 14 | cab 2702 |
. . . . . 6
class {𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))} |
29 | | cscut 27761 |
. . . . . 6
class
|s |
30 | 23, 28, 29 | co 7419 |
. . . . 5
class ({𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}) |
31 | 7, 30 | wceq 1533 |
. . . 4
wff 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}) |
32 | 13, 31 | wa 394 |
. . 3
wff
(∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))})) |
33 | | csur 27618 |
. . 3
class No |
34 | 32, 6, 33 | crab 3418 |
. 2
class {𝑥 ∈
No ∣ (∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}))} |
35 | 1, 34 | wceq 1533 |
1
wff
ℝs = {𝑥 ∈ No
∣ (∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}))} |